forked from neuralchen/SimSwap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualizer.py
131 lines (117 loc) · 5.41 KB
/
visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import os
import ntpath
import time
from . import util
from . import html
import scipy.misc
try:
from StringIO import StringIO # Python 2.7
except ImportError:
from io import BytesIO # Python 3.x
class Visualizer():
def __init__(self, opt):
# self.opt = opt
self.tf_log = opt.tf_log
self.use_html = opt.isTrain and not opt.no_html
self.win_size = opt.display_winsize
self.name = opt.name
if self.tf_log:
import tensorflow as tf
self.tf = tf
self.log_dir = os.path.join(opt.checkpoints_dir, opt.name, 'logs')
self.writer = tf.summary.FileWriter(self.log_dir)
if self.use_html:
self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
self.img_dir = os.path.join(self.web_dir, 'images')
print('create web directory %s...' % self.web_dir)
util.mkdirs([self.web_dir, self.img_dir])
self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
with open(self.log_name, "a") as log_file:
now = time.strftime("%c")
log_file.write('================ Training Loss (%s) ================\n' % now)
# |visuals|: dictionary of images to display or save
def display_current_results(self, visuals, epoch, step):
if self.tf_log: # show images in tensorboard output
img_summaries = []
for label, image_numpy in visuals.items():
# Write the image to a string
try:
s = StringIO()
except:
s = BytesIO()
scipy.misc.toimage(image_numpy).save(s, format="jpeg")
# Create an Image object
img_sum = self.tf.Summary.Image(encoded_image_string=s.getvalue(), height=image_numpy.shape[0], width=image_numpy.shape[1])
# Create a Summary value
img_summaries.append(self.tf.Summary.Value(tag=label, image=img_sum))
# Create and write Summary
summary = self.tf.Summary(value=img_summaries)
self.writer.add_summary(summary, step)
if self.use_html: # save images to a html file
for label, image_numpy in visuals.items():
if isinstance(image_numpy, list):
for i in range(len(image_numpy)):
img_path = os.path.join(self.img_dir, 'epoch%.3d_%s_%d.jpg' % (epoch, label, i))
util.save_image(image_numpy[i], img_path)
else:
img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.jpg' % (epoch, label))
util.save_image(image_numpy, img_path)
# update website
webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=30)
for n in range(epoch, 0, -1):
webpage.add_header('epoch [%d]' % n)
ims = []
txts = []
links = []
for label, image_numpy in visuals.items():
if isinstance(image_numpy, list):
for i in range(len(image_numpy)):
img_path = 'epoch%.3d_%s_%d.jpg' % (n, label, i)
ims.append(img_path)
txts.append(label+str(i))
links.append(img_path)
else:
img_path = 'epoch%.3d_%s.jpg' % (n, label)
ims.append(img_path)
txts.append(label)
links.append(img_path)
if len(ims) < 10:
webpage.add_images(ims, txts, links, width=self.win_size)
else:
num = int(round(len(ims)/2.0))
webpage.add_images(ims[:num], txts[:num], links[:num], width=self.win_size)
webpage.add_images(ims[num:], txts[num:], links[num:], width=self.win_size)
webpage.save()
# errors: dictionary of error labels and values
def plot_current_errors(self, errors, step):
if self.tf_log:
for tag, value in errors.items():
summary = self.tf.Summary(value=[self.tf.Summary.Value(tag=tag, simple_value=value)])
self.writer.add_summary(summary, step)
# errors: same format as |errors| of plotCurrentErrors
def print_current_errors(self, epoch, i, errors, t):
message = '(epoch: %d, iters: %d, time: %.3f) ' % (epoch, i, t)
for k, v in errors.items():
if v != 0:
message += '%s: %.3f ' % (k, v)
print(message)
with open(self.log_name, "a") as log_file:
log_file.write('%s\n' % message)
# save image to the disk
def save_images(self, webpage, visuals, image_path):
image_dir = webpage.get_image_dir()
short_path = ntpath.basename(image_path[0])
name = os.path.splitext(short_path)[0]
webpage.add_header(name)
ims = []
txts = []
links = []
for label, image_numpy in visuals.items():
image_name = '%s_%s.jpg' % (name, label)
save_path = os.path.join(image_dir, image_name)
util.save_image(image_numpy, save_path)
ims.append(image_name)
txts.append(label)
links.append(image_name)
webpage.add_images(ims, txts, links, width=self.win_size)