forked from neuralchen/SimSwap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideoswap_specific.py
130 lines (103 loc) · 4.99 KB
/
videoswap_specific.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import cv2
import glob
import torch
import shutil
import numpy as np
from tqdm import tqdm
from util.reverse2original import reverse2wholeimage
import moviepy.editor as mp
from moviepy.editor import AudioFileClip, VideoFileClip
from moviepy.video.io.ImageSequenceClip import ImageSequenceClip
import time
from util.add_watermark import watermark_image
from util.norm import SpecificNorm
import torch.nn.functional as F
from parsing_model.model import BiSeNet
def _totensor(array):
tensor = torch.from_numpy(array)
img = tensor.transpose(0, 1).transpose(0, 2).contiguous()
return img.float().div(255)
def video_swap(video_path, id_vetor,specific_person_id_nonorm,id_thres, swap_model, detect_model, save_path, temp_results_dir='./temp_results', crop_size=224, no_simswaplogo = False,use_mask =False):
video_forcheck = VideoFileClip(video_path)
if video_forcheck.audio is None:
no_audio = True
else:
no_audio = False
del video_forcheck
if not no_audio:
video_audio_clip = AudioFileClip(video_path)
video = cv2.VideoCapture(video_path)
logoclass = watermark_image('./simswaplogo/simswaplogo.png')
ret = True
frame_index = 0
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
# video_WIDTH = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
# video_HEIGHT = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = video.get(cv2.CAP_PROP_FPS)
if os.path.exists(temp_results_dir):
shutil.rmtree(temp_results_dir)
spNorm =SpecificNorm()
mse = torch.nn.MSELoss().cuda()
if use_mask:
n_classes = 19
net = BiSeNet(n_classes=n_classes)
net.cuda()
save_pth = os.path.join('./parsing_model/checkpoint', '79999_iter.pth')
net.load_state_dict(torch.load(save_pth))
net.eval()
else:
net =None
# while ret:
for frame_index in tqdm(range(frame_count)):
ret, frame = video.read()
if ret:
detect_results = detect_model.get(frame,crop_size)
if detect_results is not None:
# print(frame_index)
if not os.path.exists(temp_results_dir):
os.mkdir(temp_results_dir)
frame_align_crop_list = detect_results[0]
frame_mat_list = detect_results[1]
id_compare_values = []
frame_align_crop_tenor_list = []
for frame_align_crop in frame_align_crop_list:
# BGR TO RGB
# frame_align_crop_RGB = frame_align_crop[...,::-1]
frame_align_crop_tenor = _totensor(cv2.cvtColor(frame_align_crop,cv2.COLOR_BGR2RGB))[None,...].cuda()
frame_align_crop_tenor_arcnorm = spNorm(frame_align_crop_tenor)
frame_align_crop_tenor_arcnorm_downsample = F.interpolate(frame_align_crop_tenor_arcnorm, scale_factor=0.5)
frame_align_crop_crop_id_nonorm = swap_model.netArc(frame_align_crop_tenor_arcnorm_downsample)
id_compare_values.append(mse(frame_align_crop_crop_id_nonorm,specific_person_id_nonorm).detach().cpu().numpy())
frame_align_crop_tenor_list.append(frame_align_crop_tenor)
id_compare_values_array = np.array(id_compare_values)
min_index = np.argmin(id_compare_values_array)
min_value = id_compare_values_array[min_index]
if min_value < id_thres:
swap_result = swap_model(None, frame_align_crop_tenor_list[min_index], id_vetor, None, True)[0]
reverse2wholeimage([frame_align_crop_tenor_list[min_index]], [swap_result], [frame_mat_list[min_index]], crop_size, frame, logoclass,\
os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)),no_simswaplogo,pasring_model =net,use_mask= use_mask, norm = spNorm)
else:
if not os.path.exists(temp_results_dir):
os.mkdir(temp_results_dir)
frame = frame.astype(np.uint8)
if not no_simswaplogo:
frame = logoclass.apply_frames(frame)
cv2.imwrite(os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)), frame)
else:
if not os.path.exists(temp_results_dir):
os.mkdir(temp_results_dir)
frame = frame.astype(np.uint8)
if not no_simswaplogo:
frame = logoclass.apply_frames(frame)
cv2.imwrite(os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)), frame)
else:
break
video.release()
# image_filename_list = []
path = os.path.join(temp_results_dir,'*.jpg')
image_filenames = sorted(glob.glob(path))
clips = ImageSequenceClip(image_filenames,fps = fps)
if not no_audio:
clips = clips.set_audio(video_audio_clip)
clips.write_videofile(save_path,audio_codec='aac')