-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdgfem.f90
executable file
·689 lines (611 loc) · 18.8 KB
/
dgfem.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
module dgfem
use linalg
implicit none
integer :: Ne
integer, parameter :: icomb(2, 6) = [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
real(kind=8), parameter :: M(4, 4) = [[0.1d0, 0.5d-1, 0.5d-1, 0.5d-1], &
[0.5d-1, 0.1d0, 0.5d-1, 0.5d-1], &
[0.5d-1, 0.5d-1, 0.1d0, 0.5d-1], &
[0.5d-1, 0.5d-1, 0.5d-1, 0.1d0]]
real(kind=8), parameter :: pi = 4.0d0 * atan(1.0d0)
real(kind=8), parameter :: eps0 = 8.854d-012
real(kind=8), parameter :: sig0 = 0.0d0
real(kind=8), parameter :: mu0 = 1.257d-006
real(kind=8), parameter :: c0 = 1.0d0 / sqrt(eps0 * mu0)
real(kind=8), parameter :: Zs = sqrt(mu0 / eps0)
real(kind=8), parameter :: Ys = sqrt(eps0 / mu0)
real(kind=8), parameter :: tau = 1.0d-9
real(kind=8), parameter :: dt = 1d-11
real(kind=8), parameter :: f = 2.0d8
real(kind=8), parameter :: omega = 2.0d0 * pi * f
integer, parameter :: N = 3000
integer :: record_id
real(kind=8), parameter :: record_point(3) = [1.0d0, 2.0d0, 2.0d0]
real(kind=8) :: record_data(N)
integer :: source_elem(20), source_elem_number
integer :: sid1, sid2
type elem
integer :: eid
integer :: pid(4)
integer :: exterior_id(4)
real(kind=8) :: epsilon, mu, sigma
real(kind=8) :: volumn
real(kind=8) :: He(6)
real(kind=8) :: Ee(6)
real(kind=8) :: fee(6)
real(kind=8) :: fhe(6)
real(kind=8) :: bee(6)
real(kind=8) :: bhe(6)
real(kind=8) :: l(6)
real(kind=8) :: f_area(4)
real(kind=8) :: coord_matrix(4, 4)
real(kind=8) :: coef_matrix(4, 4)
real(kind=8) :: Tee(6, 6)
real(kind=8) :: The(6, 6)
real(kind=8) :: Se(6, 6)
real(kind=8) :: Ree(6, 6)
real(kind=8) :: Rhe(6, 6)
contains
procedure :: u => element_u
procedure :: p => element_p
procedure :: F => element_F
procedure :: N => base_value
procedure :: curl_N => curl_base
procedure :: E_field => element_E_field
procedure :: H_field => element_H_field
procedure :: center_coord => element_center_coord
procedure :: center_E_field => element_center_E_field
procedure :: center_H_field => element_center_H_field
procedure :: center_Ez => element_center_Ez
procedure :: Se_inte_func => element_Se_inte_func
end type
type(elem), allocatable, target :: elements(:)
contains
function simplex_id(e, i) result(si)
integer :: e, i, si
si = icomb(i, e)
end function
subroutine init_elem(eid)
use gmsh
use linalg
integer :: eid, i, li1, li2, e
type(elem), pointer :: el
el => elements(eid)
el % eid = eid
el % pid = tetrah(eid) % node_number_list
el % epsilon = eps0
el % mu = mu0
el % sigma = 0.0d0
do i = 1, 4
el % coord_matrix(1: 3, i) = pts(el % pid(i))
el % f_area(i) = face_area(eid, i)
el % exterior_id(i) = adjacent_element(eid, i)
end do
el % coord_matrix(4, :) = 1.0d0
el % volumn = abs(determin(el % coord_matrix)) / 6.0d0
el % coef_matrix = el % coord_matrix
call inverse(el % coef_matrix)
do e = 1, 6
li1 = simplex_id(e, 1)
li2 = simplex_id(e, 2)
el % l(e) = norm(pts(el % pid(li1)) - pts(el % pid(li2)))
end do
el % bee = 0.0d0
el % bhe = 0.0d0
call fill_Tee(el)
call fill_The(el)
call fill_Se(el)
call fill_Ree(el)
call fill_Rhe(el)
end subroutine
subroutine fill_Tee(el)
type(elem) :: el
integer :: i, j
do i = 1, 6
do j = 1, 6
el % Tee(i, j) = el % epsilon * el % F(i, j)
end do
end do
end subroutine
subroutine fill_The(el)
type(elem) :: el
integer :: i, j
do i = 1, 6
do j = 1, 6
el % The(i, j) = el % mu * el % F(i, j)
end do
end do
end subroutine
subroutine fill_Ree(el)
type(elem) :: el
integer :: i, j
if (el % sigma == 0.0d0) then
el % Ree = 0.0d0
else
do i = 1, 6
do j = 1, 6
el % The(i, j) = el % sigma * el % F(i, j)
end do
end do
end if
end subroutine
subroutine fill_Rhe(el)
type(elem) :: el
el % Rhe = 0.0d0
end subroutine
subroutine update_fee(el)
use gmsh
type(elem) :: el
type(quad_point) :: im_data(4)
real(kind=8) :: n(3), p(3), area, weight
integer :: i, j, k
el % fee = 0.0d0
do j = 1, 4
if (el % exterior_id(j) == -1) then
cycle
else
im_data = triang_quad_point(el % eid, j)
n = normal_of_face(el % eid, j)
area = el % f_area(j)
do k = 1, 4
p = im_data(k) % coord
weight = im_data(k) % W
do i = 1, 6
el % fee(i) = el % fee(i) + area * weight * dot(el % N(i, p), &
cross(n, elements(el % exterior_id(j)) % H_field(p)))
end do
end do
end if
end do
end subroutine
subroutine update_fhe(el)
use gmsh
type(elem) :: el
type(quad_point) :: im_data(4)
real(kind=8) :: n(3), p(3), area, weight
integer :: i, j, k
el % fhe = 0.0d0
do j = 1, 4
if (el % exterior_id(j) == -1) then
cycle
else
im_data = triang_quad_point(el % eid, j)
n = normal_of_face(el % eid, j)
area = el % f_area(j)
do k = 1, 4
p = im_data(k) % coord
weight = im_data(k) % W
do i = 1, 6
el % fhe(i) = el % fhe(i) + area * weight * dot(cross(n, el % N(i, p)), &
elements(el % exterior_id(j)).E_field(p))
end do
end do
end if
end do
end subroutine
subroutine update_Ee(el)
use lapack95
use util
type(elem) :: el
real(kind=8) :: A(6, 6)
integer :: ipiv(6)
A = el % Tee / dt + 0.5d0 * el % Ree
call update_fee(el)
el % Ee = matmul(el % Tee / dt - 0.5d0 * el % Ree, el % Ee) &
+ matmul(el % Se, el % He) + el % fee + el % bee
call getrf(A, ipiv)
call getrs(A, ipiv, el % Ee)
end subroutine
subroutine update_He(el)
use lapack95
type(elem) :: el
real(kind=8) :: A(6, 6)
integer :: ipiv(6)
A = el % The / dt + 0.5d0 * el % Rhe
call update_fhe(el)
el % He = matmul(el % The / dt - 0.5d0 * el % Rhe, el % He) &
- matmul(el % Se, el % Ee) + el % fhe + el % bhe
call getrf(A, ipiv)
call getrs(A, ipiv, el % He)
end subroutine
subroutine impress_source(el, pid1, pid2, dI)
type(elem) :: el
integer :: pid1, pid2
real(kind=8) :: dI
if (all([pid1, pid2] == [el % pid(1), el % pid(2)], 1)) then
el % bee(1) = - el % l(1) * dI
else if (all([pid1, pid2] == [el % pid(2), el % pid(1)], 1)) then
el % bee(1) = el % l(1) * dI
else if (all([pid1, pid2] == [el % pid(1), el % pid(3)], 1)) then
el % bee(2) = - el % l(2) * dI
else if (all([pid1, pid2] == [el % pid(3), el % pid(1)], 1)) then
el % bee(2) = el % l(2) * dI
else if (all([pid1, pid2] == [el % pid(1), el % pid(4)], 1)) then
el % bee(3) = - el % l(3) * dI
else if (all([pid1, pid2] == [el % pid(4), el % pid(1)], 1)) then
el % bee(3) = el % l(3) * dI
else if (all([pid1, pid2] == [el % pid(2), el % pid(3)], 1)) then
el % bee(4) = - el % l(4) * dI
else if (all([pid1, pid2] == [el % pid(3), el % pid(2)], 1)) then
el % bee(4) = el % l(4) * dI
else if (all([pid1, pid2] == [el % pid(2), el % pid(4)], 1)) then
el % bee(5) = - el % l(5) * dI
else if (all([pid1, pid2] == [el % pid(4), el % pid(2)], 1)) then
el % bee(5) = el % l(5) * dI
else if (all([pid1, pid2] == [el % pid(3), el % pid(4)], 1)) then
el % bee(6) = - el % l(6) * dI
else if (all([pid1, pid2] == [el % pid(4), el % pid(3)], 1)) then
el % bee(6) = el % l(6) * dI
end if
end subroutine
#define a_(i) (el.coef_matrix(i, 4))
#define b_(i) (el.coef_matrix(i, 1))
#define c_(i) (el.coef_matrix(i, 2))
#define d_(i) (el.coef_matrix(i, 3))
function element_u(el, i, j)
real(kind=8) :: element_u(3)
class(elem) :: el
integer :: i, j
element_u = [c_(i) * d_(j) - c_(j) * d_(i), &
b_(j) * d_(i) - b_(i) * d_(j), &
b_(i) * c_(j) - b_(j) * c_(i)]
end function
function element_p(el, i, j)
real(kind=8) :: element_p
class(elem) :: el
integer :: i, j
element_p = b_(i) * b_(j) + c_(i) * c_(j) + d_(i) * d_(j)
end function
function element_F(el, i, j)
use util
class(elem) :: el
integer :: i, j, i1, i2, j1, j2
real(kind=8) :: element_F
i1 = simplex_id(i, 1)
i2 = simplex_id(i, 2)
j1 = simplex_id(j, 1)
j2 = simplex_id(j, 2)
element_F = el % volumn * el % l(i) * el % l(j) &
* (el % p(i2, j2) * M(i1, j1) &
- el % p(i2, j1) * M(i1, j2) &
- el % p(i1, j2) * M(i2, j1) &
+ el % p(i1, j1) * M(i2, j2) &
)
end function
function base_value(el, i, p) result(vector)
class(elem) :: el
integer :: i, i1, i2
real(kind=8) :: p(3), vector(3), Li1, Li2
i1 = simplex_id(i, 1)
i2 = simplex_id(i, 2)
Li1 = a_(i1) + b_(i1) * p(1) + c_(i1) * p(2) + d_(i1) * p(3)
Li2 = a_(i2) + b_(i2) * p(1) + c_(i2) * p(2) + d_(i2) * p(3)
vector = el % l(i) * ( &
Li1 * [b_(i2), c_(i2), d_(i2)] - &
Li2 * [b_(i1), c_(i1), d_(i1)] &
)
end function
function curl_base(el, i, p) result(vector)
class(elem) :: el
integer :: i, i1, i2
real(kind=8) :: p(3), vector(3)
i1 = simplex_id(i, 1)
i2 = simplex_id(i, 2)
vector = 2.0d0 * el % l(i) * el % u(i1, i2)
end function
function element_E_field(el, p) result(Ev)
class(elem) :: el
real(kind=8) :: p(3), Ev(3)
Ev = el % Ee(1) * el % N(1, p) + &
el % Ee(2) * el % N(2, p) + &
el % Ee(3) * el % N(3, p) + &
el % Ee(4) * el % N(4, p) + &
el % Ee(5) * el % N(5, p) + &
el % Ee(6) * el % N(6, p)
end function
function element_H_field(el, p) result(Hv)
class(elem) :: el
real(kind=8) :: p(3), Hv(3)
Hv = el % He(1) * el % N(1, p) + &
el % He(2) * el % N(2, p) + &
el % He(3) * el % N(3, p) + &
el % He(4) * el % N(4, p) + &
el % He(5) * el % N(5, p) + &
el % He(6) * el % N(6, p)
end function
function element_center_coord(el) result(coord)
use gmsh
class(elem) :: el
real(kind=8) :: coord(3)
coord = center_of_element(el % eid)
end function
function element_center_E_field(el) result(Ev)
class(elem) :: el
real(kind=8) :: Ev(3)
Ev = el % E_field(el % center_coord())
end function
function element_center_H_field(el) result(Hv)
class(elem) :: el
real(kind=8) :: Hv(3)
Hv = el % H_field(el % center_coord())
end function
function element_center_Ez(el) result(Ez)
class(elem) :: el
real(kind=8) :: Ez
Ez = dot(el % center_E_field(), [0.0d0, 0.0d0, 1.0d0])
end function
function element_Se_inte_func(el, i, j, p) result(d)
use linalg
class(elem) :: el
integer :: i, j
real(kind=8) :: p(3), d
d = 0.5d0 * (dot(el % N(i, p), el % curl_N(j, p)) + &
dot(el % curl_N(i, p), el % N(j, p)))
end function
subroutine fill_Se(el)
use gmsh
type(elem) :: el
type(quad_point) :: im_data(5)
integer :: i, j, k
im_data = tetrah_quad_point(el % eid)
do i = 1, 6
do j = 1, 6
do k = 1, 5
el % Se(i, j) = el % Se(i, j) + 6.0d0 * el % volumn &
* im_data(k) % W &
* el % Se_inte_func(i, j, im_data(k) % coord)
end do
end do
end do
end subroutine
subroutine impose_boundary(el, f_local)
use gmsh
type(elem) :: el
type(quad_point) :: im_data(4)
real(kind=8) :: n(3), ac, area
real(kind=8) :: p(3), weight
integer :: i, j, k, f_local
im_data = triang_quad_point(el % eid, f_local)
area = el % f_area(f_local)
n = normal_of_face(el % eid, f_local)
do k = 1, 4
weight = im_data(k) % W
p = im_data(k) % coord
do i = 1, 6
do j = 1, 6
ac = area * weight * dot(cross(n, el % N(i, p)), &
cross(n, el % N(j, p)))
el % Ree(i, j) = el % Ree(i, j) + Ys * ac
el % Rhe(i, j) = el % Ree(i, j) + Zs * ac
end do
end do
end do
end subroutine
subroutine configure_source()
use gmsh
real(kind=8) :: p1(3), p2(3)
p1 = [2.0d0, 2.0d0, 1.9d0]
p2 = [2.0d0, 2.0d0, 2.1d0]
sid1 = pid_from_coord(p1)
sid2 = pid_from_coord(p2)
call eid_from_pid([sid1, sid2], source_elem, source_elem_number)
print *, "Configured current source..."
end subroutine
subroutine impress_current_source(t)
use signal
real(kind=8) :: t, dI
integer :: i
dI = gauss_module(t - 5.0d0 * tau, tau, omega)
do i = 1, source_elem_number
call impress_source(elements(source_elem(i)), sid1, sid2, dI)
end do
end subroutine
subroutine impose_boundary_condition()
use gmsh
integer :: i
!$omp parallel do
do i = 1, size(boundary)
call impose_boundary(elements(boundary(i) % eid), &
boundary(i) % local_fid)
end do
!$omp end parallel do
end subroutine
subroutine init_dgfem()
use gmsh
use util
integer :: eid
print *, "Initializing elements..."
Ne = tetrah_n
allocate(elements(Ne))
!$omp parallel do
do eid = 1, tetrah_n
call init_elem(eid)
end do
!$omp end parallel do
call impose_boundary_condition
end subroutine
subroutine update_E()
integer :: i
!$omp parallel do
do i = 1, Ne
call update_Ee(elements(i))
end do
!$omp end parallel do
end subroutine
subroutine update_H()
integer :: i
!$omp parallel do
do i = 1, Ne
call update_He(elements(i))
end do
!$omp end parallel do
end subroutine
subroutine show_element_info(eid)
use util
integer :: eid
type(elem) :: el
el = elements(eid)
print *, "Tee"
call show_matrix(el % Tee)
print *, "The"
call show_matrix(el % The)
print *, "Se"
call show_matrix(el % Se)
print *, "Ree"
call show_matrix(el % Ree)
print *, "Rhe"
call show_matrix(el % Rhe)
print *, "fee"
print *, el % fee
print *, "fhe"
print *, el % fhe
print *, "bee"
print *, el % bee
print *, "bhe"
print *, el % bhe
end subroutine
function time_step_requirement(el) result(time_step)
type(elem) :: el
real(kind=8) :: time_step
time_step = 4.0d0 * el % volumn / (c0 * sum(el % f_area)) / (4.0d0 * sqrt(5.0d0) / 3.0d0 + 8.0d0 / 3.0d0)
end function
function maximum_time_step() result(time_step)
real(kind=8) :: time_step
integer :: i
time_step = time_step_requirement(elements(1))
do i = 1, Ne
if (time_step_requirement(elements(i)) < time_step) then
time_step = time_step_requirement(elements(i))
!print *, i, time_step_requirement(elements(i))
end if
end do
end function
subroutine test_element()
use util
use gmsh
integer :: i
do i = 1, Ne
if (norm(elements(i) % center_E_field()) > 100d0) then
print *, i
end if
end do
end subroutine
subroutine export_electric_field(id)
character(len=100) :: filename
character(len=20), parameter :: POS_HEADER = 'View "field" {'
character(len=2), parameter :: POS_FOOTER = '};'
real(kind=8) :: coord(3), field(3)
integer :: i, id
print *, "Export electric field..."
write (filename, '(A, I, A)') "view", id, ".pos"
open(unit=10, file=filename)
write (10, '(A)'), POS_HEADER
do i = 1, Ne
coord = elements(i) % center_coord()
field = elements(i) % center_E_field()
write (10, 100), coord, field
end do
write (10, '(A)'), POS_FOOTER
close(10)
100 format ('VP(', F, ',', F, ',', F, '){', E, ',', E, ',', E'};')
end subroutine
subroutine export_Ez_field(id)
use gmsh
type(elem) :: el
character(len=100) :: filename
character(len=20), parameter :: POS_HEADER = 'View "field" {'
character(len=2), parameter :: POS_FOOTER = '};'
real(kind=8) :: p1(3), p2(3), p3(3), p4(3),&
v1, v2, v3, v4
integer :: i, id
print *, "Export electric field..."
write (filename, '(A, I, A)') "view", id, ".pos"
open(unit=10, file=filename)
write (10, '(A)'), POS_HEADER
do i = 1, Ne
el = elements(i)
p1 = pts(el % pid(1))
p2 = pts(el % pid(2))
p3 = pts(el % pid(3))
p4 = pts(el % pid(4))
v1 = dot(el % E_field(p1), [0.0d0, 0.0d0, 1.0d0])
v2 = dot(el % E_field(p2), [0.0d0, 0.0d0, 1.0d0])
v3 = dot(el % E_field(p3), [0.0d0, 0.0d0, 1.0d0])
v4 = dot(el % E_field(p4), [0.0d0, 0.0d0, 1.0d0])
write (10, 100), p1, p2, p3, p4, v1, v2, v3, v4
end do
write (10, '(A)'), POS_FOOTER
close(10)
100 format ('SS(', 11(F, ','), F, '){', 3(E, ','), E, '};')
end subroutine
subroutine record_field(i)
integer :: i
real(kind=8) :: ef(3)
ef = elements(record_id) % E_field(record_point)
record_data(i) = ef(3)
end subroutine
subroutine output_record()
integer :: i
real(kind=8) :: t
open(unit=10, file="signal.txt")
do i = 1, N
t = dt * i
write (10, *), t, record_data(i)
end do
close(10)
end subroutine
function point_in_element(p, el) result(test)
real(kind=8) :: p(3), c(4)
type(elem) :: el
integer :: i
logical :: test
do i = 1, 4
c(i) = a_(i) * p(1) + b_(i) * p(2) + c_(i) * p(3) + d_(i)
end do
test = all(c >= 0.0d0 .and. c <= 1.0d0, 1)
end function
function element_contains_point(p) result(eid)
integer :: i, eid
real(kind=8) :: p(3)
eid = -1
do i = 1, Ne
if (point_in_element(p, elements(i))) then
eid = i
return
end if
end do
print *, "Error, failed to find the corresponding element of record point..."
end function
subroutine configure_signal_record()
record_id = element_contains_point(record_point)
print *, "The signal at the point (", record_point, ") will be recorded..."
end subroutine
end module
program main
use gmsh
use dgfem
use signal
real(kind=8) :: t
call load_mesh("fetd_dipole.msh")
call init_dgfem
call configure_source
call configure_signal_record
print *, "Maximum time step width: ", maximum_time_step()
print *, "-----------------------------------------------------------------"
print *, "Start updating electromagnetic field..."
print *
do i = 1, N
t = i * dt
print *, i, t
call impress_current_source(t)
call update_E
call update_H
call record_field(i)
if (mod(i, 100) == 0) then
call export_Ez_field(i)
end if
end do
call output_record
call export_electric_field(-1)
pause
end program