forked from dlang/phobos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctional.d
1782 lines (1585 loc) · 47.8 KB
/
functional.d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Written in the D programming language.
/**
Functions that manipulate other functions.
This module provides functions for compile time function composition. These
functions are helpful when constructing predicates for the algorithms in
$(MREF std, algorithm) or $(MREF std, range).
$(SCRIPT inhibitQuickIndex = 1;)
$(BOOKTABLE ,
$(TR $(TH Function Name) $(TH Description)
)
$(TR $(TD $(LREF adjoin))
$(TD Joins a couple of functions into one that executes the original
functions independently and returns a tuple with all the results.
))
$(TR $(TD $(LREF compose), $(LREF pipe))
$(TD Join a couple of functions into one that executes the original
functions one after the other, using one function's result for the next
function's argument.
))
$(TR $(TD $(LREF forward))
$(TD Forwards function arguments while saving ref-ness.
))
$(TR $(TD $(LREF lessThan), $(LREF greaterThan), $(LREF equalTo))
$(TD Ready-made predicate functions to compare two values.
))
$(TR $(TD $(LREF memoize))
$(TD Creates a function that caches its result for fast re-evaluation.
))
$(TR $(TD $(LREF not))
$(TD Creates a function that negates another.
))
$(TR $(TD $(LREF partial))
$(TD Creates a function that binds the first argument of a given function
to a given value.
))
$(TR $(TD $(LREF reverseArgs))
$(TD Predicate that reverses the order of its arguments.
))
$(TR $(TD $(LREF toDelegate))
$(TD Converts a callable to a delegate.
))
$(TR $(TD $(LREF unaryFun), $(LREF binaryFun))
$(TD Create a unary or binary function from a string. Most often
used when defining algorithms on ranges.
))
)
Copyright: Copyright Andrei Alexandrescu 2008 - 2009.
License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: $(HTTP erdani.org, Andrei Alexandrescu)
Source: $(PHOBOSSRC std/functional.d)
*/
/*
Copyright Andrei Alexandrescu 2008 - 2009.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
*/
module std.functional;
import std.meta; // AliasSeq, Reverse
import std.traits; // isCallable, Parameters
private template needOpCallAlias(alias fun)
{
/* Determine whether or not unaryFun and binaryFun need to alias to fun or
* fun.opCall. Basically, fun is a function object if fun(...) compiles. We
* want is(unaryFun!fun) (resp., is(binaryFun!fun)) to be true if fun is
* any function object. There are 4 possible cases:
*
* 1) fun is the type of a function object with static opCall;
* 2) fun is an instance of a function object with static opCall;
* 3) fun is the type of a function object with non-static opCall;
* 4) fun is an instance of a function object with non-static opCall.
*
* In case (1), is(unaryFun!fun) should compile, but does not if unaryFun
* aliases itself to fun, because typeof(fun) is an error when fun itself
* is a type. So it must be aliased to fun.opCall instead. All other cases
* should be aliased to fun directly.
*/
static if (is(typeof(fun.opCall) == function))
{
enum needOpCallAlias = !is(typeof(fun)) && __traits(compiles, () {
return fun(Parameters!fun.init);
});
}
else
enum needOpCallAlias = false;
}
/**
Transforms a `string` representing an expression into a unary
function. The `string` must either use symbol name `a` as
the parameter or provide the symbol via the `parmName` argument.
Params:
fun = a `string` or a callable
parmName = the name of the parameter if `fun` is a string. Defaults
to `"a"`.
Returns:
If `fun` is a `string`, a new single parameter function
If `fun` is not a `string`, an alias to `fun`.
*/
template unaryFun(alias fun, string parmName = "a")
{
static if (is(typeof(fun) : string))
{
static if (!fun._ctfeMatchUnary(parmName))
{
import std.algorithm, std.conv, std.exception, std.math, std.range, std.string;
import std.meta, std.traits, std.typecons;
}
auto unaryFun(ElementType)(auto ref ElementType __a)
{
mixin("alias " ~ parmName ~ " = __a ;");
return mixin(fun);
}
}
else static if (needOpCallAlias!fun)
{
// Issue 9906
alias unaryFun = fun.opCall;
}
else
{
alias unaryFun = fun;
}
}
///
@safe unittest
{
// Strings are compiled into functions:
alias isEven = unaryFun!("(a & 1) == 0");
assert(isEven(2) && !isEven(1));
}
@safe unittest
{
static int f1(int a) { return a + 1; }
static assert(is(typeof(unaryFun!(f1)(1)) == int));
assert(unaryFun!(f1)(41) == 42);
int f2(int a) { return a + 1; }
static assert(is(typeof(unaryFun!(f2)(1)) == int));
assert(unaryFun!(f2)(41) == 42);
assert(unaryFun!("a + 1")(41) == 42);
//assert(unaryFun!("return a + 1;")(41) == 42);
int num = 41;
assert(unaryFun!"a + 1"(num) == 42);
// Issue 9906
struct Seen
{
static bool opCall(int n) { return true; }
}
static assert(needOpCallAlias!Seen);
static assert(is(typeof(unaryFun!Seen(1))));
assert(unaryFun!Seen(1));
Seen s;
static assert(!needOpCallAlias!s);
static assert(is(typeof(unaryFun!s(1))));
assert(unaryFun!s(1));
struct FuncObj
{
bool opCall(int n) { return true; }
}
FuncObj fo;
static assert(!needOpCallAlias!fo);
static assert(is(typeof(unaryFun!fo)));
assert(unaryFun!fo(1));
// Function object with non-static opCall can only be called with an
// instance, not with merely the type.
static assert(!is(typeof(unaryFun!FuncObj)));
}
/**
Transforms a `string` representing an expression into a binary function. The
`string` must either use symbol names `a` and `b` as the parameters or
provide the symbols via the `parm1Name` and `parm2Name` arguments.
Params:
fun = a `string` or a callable
parm1Name = the name of the first parameter if `fun` is a string.
Defaults to `"a"`.
parm2Name = the name of the second parameter if `fun` is a string.
Defaults to `"b"`.
Returns:
If `fun` is not a string, `binaryFun` aliases itself away to
`fun`.
*/
template binaryFun(alias fun, string parm1Name = "a",
string parm2Name = "b")
{
static if (is(typeof(fun) : string))
{
static if (!fun._ctfeMatchBinary(parm1Name, parm2Name))
{
import std.algorithm, std.conv, std.exception, std.math, std.range, std.string;
import std.meta, std.traits, std.typecons;
}
auto binaryFun(ElementType1, ElementType2)
(auto ref ElementType1 __a, auto ref ElementType2 __b)
{
mixin("alias "~parm1Name~" = __a ;");
mixin("alias "~parm2Name~" = __b ;");
return mixin(fun);
}
}
else static if (needOpCallAlias!fun)
{
// Issue 9906
alias binaryFun = fun.opCall;
}
else
{
alias binaryFun = fun;
}
}
///
@safe unittest
{
alias less = binaryFun!("a < b");
assert(less(1, 2) && !less(2, 1));
alias greater = binaryFun!("a > b");
assert(!greater("1", "2") && greater("2", "1"));
}
@safe unittest
{
static int f1(int a, string b) { return a + 1; }
static assert(is(typeof(binaryFun!(f1)(1, "2")) == int));
assert(binaryFun!(f1)(41, "a") == 42);
string f2(int a, string b) { return b ~ "2"; }
static assert(is(typeof(binaryFun!(f2)(1, "1")) == string));
assert(binaryFun!(f2)(1, "4") == "42");
assert(binaryFun!("a + b")(41, 1) == 42);
//@@BUG
//assert(binaryFun!("return a + b;")(41, 1) == 42);
// Issue 9906
struct Seen
{
static bool opCall(int x, int y) { return true; }
}
static assert(is(typeof(binaryFun!Seen)));
assert(binaryFun!Seen(1,1));
struct FuncObj
{
bool opCall(int x, int y) { return true; }
}
FuncObj fo;
static assert(!needOpCallAlias!fo);
static assert(is(typeof(binaryFun!fo)));
assert(unaryFun!fo(1,1));
// Function object with non-static opCall can only be called with an
// instance, not with merely the type.
static assert(!is(typeof(binaryFun!FuncObj)));
}
// skip all ASCII chars except a .. z, A .. Z, 0 .. 9, '_' and '.'.
private uint _ctfeSkipOp(ref string op)
{
if (!__ctfe) assert(false);
import std.ascii : isASCII, isAlphaNum;
immutable oldLength = op.length;
while (op.length)
{
immutable front = op[0];
if (front.isASCII() && !(front.isAlphaNum() || front == '_' || front == '.'))
op = op[1..$];
else
break;
}
return oldLength != op.length;
}
// skip all digits
private uint _ctfeSkipInteger(ref string op)
{
if (!__ctfe) assert(false);
import std.ascii : isDigit;
immutable oldLength = op.length;
while (op.length)
{
immutable front = op[0];
if (front.isDigit())
op = op[1..$];
else
break;
}
return oldLength != op.length;
}
// skip name
private uint _ctfeSkipName(ref string op, string name)
{
if (!__ctfe) assert(false);
if (op.length >= name.length && op[0 .. name.length] == name)
{
op = op[name.length..$];
return 1;
}
return 0;
}
// returns 1 if `fun` is trivial unary function
private uint _ctfeMatchUnary(string fun, string name)
{
if (!__ctfe) assert(false);
fun._ctfeSkipOp();
for (;;)
{
immutable h = fun._ctfeSkipName(name) + fun._ctfeSkipInteger();
if (h == 0)
{
fun._ctfeSkipOp();
break;
}
else if (h == 1)
{
if (!fun._ctfeSkipOp())
break;
}
else
return 0;
}
return fun.length == 0;
}
@safe unittest
{
static assert(!_ctfeMatchUnary("sqrt(ё)", "ё"));
static assert(!_ctfeMatchUnary("ё.sqrt", "ё"));
static assert(!_ctfeMatchUnary(".ё+ё", "ё"));
static assert(!_ctfeMatchUnary("_ё+ё", "ё"));
static assert(!_ctfeMatchUnary("ёё", "ё"));
static assert(_ctfeMatchUnary("a+a", "a"));
static assert(_ctfeMatchUnary("a + 10", "a"));
static assert(_ctfeMatchUnary("4 == a", "a"));
static assert(_ctfeMatchUnary("2 == a", "a"));
static assert(_ctfeMatchUnary("1 != a", "a"));
static assert(_ctfeMatchUnary("a != 4", "a"));
static assert(_ctfeMatchUnary("a< 1", "a"));
static assert(_ctfeMatchUnary("434 < a", "a"));
static assert(_ctfeMatchUnary("132 > a", "a"));
static assert(_ctfeMatchUnary("123 >a", "a"));
static assert(_ctfeMatchUnary("a>82", "a"));
static assert(_ctfeMatchUnary("ё>82", "ё"));
static assert(_ctfeMatchUnary("ё[ё(ё)]", "ё"));
static assert(_ctfeMatchUnary("ё[21]", "ё"));
}
// returns 1 if `fun` is trivial binary function
private uint _ctfeMatchBinary(string fun, string name1, string name2)
{
if (!__ctfe) assert(false);
fun._ctfeSkipOp();
for (;;)
{
immutable h = fun._ctfeSkipName(name1) + fun._ctfeSkipName(name2) + fun._ctfeSkipInteger();
if (h == 0)
{
fun._ctfeSkipOp();
break;
}
else if (h == 1)
{
if (!fun._ctfeSkipOp())
break;
}
else
return 0;
}
return fun.length == 0;
}
@safe unittest
{
static assert(!_ctfeMatchBinary("sqrt(ё)", "ё", "b"));
static assert(!_ctfeMatchBinary("ё.sqrt", "ё", "b"));
static assert(!_ctfeMatchBinary(".ё+ё", "ё", "b"));
static assert(!_ctfeMatchBinary("_ё+ё", "ё", "b"));
static assert(!_ctfeMatchBinary("ёё", "ё", "b"));
static assert(_ctfeMatchBinary("a+a", "a", "b"));
static assert(_ctfeMatchBinary("a + 10", "a", "b"));
static assert(_ctfeMatchBinary("4 == a", "a", "b"));
static assert(_ctfeMatchBinary("2 == a", "a", "b"));
static assert(_ctfeMatchBinary("1 != a", "a", "b"));
static assert(_ctfeMatchBinary("a != 4", "a", "b"));
static assert(_ctfeMatchBinary("a< 1", "a", "b"));
static assert(_ctfeMatchBinary("434 < a", "a", "b"));
static assert(_ctfeMatchBinary("132 > a", "a", "b"));
static assert(_ctfeMatchBinary("123 >a", "a", "b"));
static assert(_ctfeMatchBinary("a>82", "a", "b"));
static assert(_ctfeMatchBinary("ё>82", "ё", "q"));
static assert(_ctfeMatchBinary("ё[ё(10)]", "ё", "q"));
static assert(_ctfeMatchBinary("ё[21]", "ё", "q"));
static assert(!_ctfeMatchBinary("sqrt(ё)+b", "b", "ё"));
static assert(!_ctfeMatchBinary("ё.sqrt-b", "b", "ё"));
static assert(!_ctfeMatchBinary(".ё+b", "b", "ё"));
static assert(!_ctfeMatchBinary("_b+ё", "b", "ё"));
static assert(!_ctfeMatchBinary("ba", "b", "a"));
static assert(_ctfeMatchBinary("a+b", "b", "a"));
static assert(_ctfeMatchBinary("a + b", "b", "a"));
static assert(_ctfeMatchBinary("b == a", "b", "a"));
static assert(_ctfeMatchBinary("b == a", "b", "a"));
static assert(_ctfeMatchBinary("b != a", "b", "a"));
static assert(_ctfeMatchBinary("a != b", "b", "a"));
static assert(_ctfeMatchBinary("a< b", "b", "a"));
static assert(_ctfeMatchBinary("b < a", "b", "a"));
static assert(_ctfeMatchBinary("b > a", "b", "a"));
static assert(_ctfeMatchBinary("b >a", "b", "a"));
static assert(_ctfeMatchBinary("a>b", "b", "a"));
static assert(_ctfeMatchBinary("ё>b", "b", "ё"));
static assert(_ctfeMatchBinary("b[ё(-1)]", "b", "ё"));
static assert(_ctfeMatchBinary("ё[-21]", "b", "ё"));
}
//undocumented
template safeOp(string S)
if (S=="<"||S==">"||S=="<="||S==">="||S=="=="||S=="!=")
{
import std.traits : isIntegral;
private bool unsafeOp(ElementType1, ElementType2)(ElementType1 a, ElementType2 b) pure
if (isIntegral!ElementType1 && isIntegral!ElementType2)
{
import std.traits : CommonType;
alias T = CommonType!(ElementType1, ElementType2);
return mixin("cast(T)a "~S~" cast(T) b");
}
bool safeOp(T0, T1)(auto ref T0 a, auto ref T1 b)
{
import std.traits : mostNegative;
static if (isIntegral!T0 && isIntegral!T1 &&
(mostNegative!T0 < 0) != (mostNegative!T1 < 0))
{
static if (S == "<=" || S == "<")
{
static if (mostNegative!T0 < 0)
immutable result = a < 0 || unsafeOp(a, b);
else
immutable result = b >= 0 && unsafeOp(a, b);
}
else
{
static if (mostNegative!T0 < 0)
immutable result = a >= 0 && unsafeOp(a, b);
else
immutable result = b < 0 || unsafeOp(a, b);
}
}
else
{
static assert(is(typeof(mixin("a "~S~" b"))),
"Invalid arguments: Cannot compare types " ~ T0.stringof ~ " and " ~ T1.stringof ~ ".");
immutable result = mixin("a "~S~" b");
}
return result;
}
}
@safe unittest //check user defined types
{
import std.algorithm.comparison : equal;
struct Foo
{
int a;
auto opEquals(Foo foo)
{
return a == foo.a;
}
}
assert(safeOp!"!="(Foo(1), Foo(2)));
}
/**
Predicate that returns $(D_PARAM a < b).
Correctly compares signed and unsigned integers, ie. -1 < 2U.
*/
alias lessThan = safeOp!"<";
///
pure @safe @nogc nothrow unittest
{
assert(lessThan(2, 3));
assert(lessThan(2U, 3U));
assert(lessThan(2, 3.0));
assert(lessThan(-2, 3U));
assert(lessThan(2, 3U));
assert(!lessThan(3U, -2));
assert(!lessThan(3U, 2));
assert(!lessThan(0, 0));
assert(!lessThan(0U, 0));
assert(!lessThan(0, 0U));
}
/**
Predicate that returns $(D_PARAM a > b).
Correctly compares signed and unsigned integers, ie. 2U > -1.
*/
alias greaterThan = safeOp!">";
///
@safe unittest
{
assert(!greaterThan(2, 3));
assert(!greaterThan(2U, 3U));
assert(!greaterThan(2, 3.0));
assert(!greaterThan(-2, 3U));
assert(!greaterThan(2, 3U));
assert(greaterThan(3U, -2));
assert(greaterThan(3U, 2));
assert(!greaterThan(0, 0));
assert(!greaterThan(0U, 0));
assert(!greaterThan(0, 0U));
}
/**
Predicate that returns $(D_PARAM a == b).
Correctly compares signed and unsigned integers, ie. !(-1 == ~0U).
*/
alias equalTo = safeOp!"==";
///
@safe unittest
{
assert(equalTo(0U, 0));
assert(equalTo(0, 0U));
assert(!equalTo(-1, ~0U));
}
/**
N-ary predicate that reverses the order of arguments, e.g., given
$(D pred(a, b, c)), returns $(D pred(c, b, a)).
Params:
pred = A callable
Returns:
A function which calls `pred` after reversing the given parameters
*/
template reverseArgs(alias pred)
{
auto reverseArgs(Args...)(auto ref Args args)
if (is(typeof(pred(Reverse!args))))
{
return pred(Reverse!args);
}
}
///
@safe unittest
{
alias gt = reverseArgs!(binaryFun!("a < b"));
assert(gt(2, 1) && !gt(1, 1));
}
///
@safe unittest
{
int x = 42;
bool xyz(int a, int b) { return a * x < b / x; }
auto foo = &xyz;
foo(4, 5);
alias zyx = reverseArgs!(foo);
assert(zyx(5, 4) == foo(4, 5));
}
///
@safe unittest
{
alias gt = reverseArgs!(binaryFun!("a < b"));
assert(gt(2, 1) && !gt(1, 1));
int x = 42;
bool xyz(int a, int b) { return a * x < b / x; }
auto foo = &xyz;
foo(4, 5);
alias zyx = reverseArgs!(foo);
assert(zyx(5, 4) == foo(4, 5));
}
///
@safe unittest
{
int abc(int a, int b, int c) { return a * b + c; }
alias cba = reverseArgs!abc;
assert(abc(91, 17, 32) == cba(32, 17, 91));
}
///
@safe unittest
{
int a(int a) { return a * 2; }
alias _a = reverseArgs!a;
assert(a(2) == _a(2));
}
///
@safe unittest
{
int b() { return 4; }
alias _b = reverseArgs!b;
assert(b() == _b());
}
// @@@DEPRECATED_2.089@@@
/**
Binary predicate that reverses the order of arguments, e.g., given
$(D pred(a, b)), returns $(D pred(b, a)).
$(RED DEPRECATED: Use $(LREF reverseArgs))
Params:
pred = A callable
Returns:
A function which calls `pred` after reversing the given parameters
*/
deprecated("Use `reverseArgs`. `binaryReverseArgs` will be removed in 2.089.")
template binaryReverseArgs(alias pred)
{
auto binaryReverseArgs(ElementType1, ElementType2)
(auto ref ElementType1 a, auto ref ElementType2 b)
{
return pred(b, a);
}
}
///
deprecated
@safe unittest
{
alias gt = binaryReverseArgs!(binaryFun!("a < b"));
assert(gt(2, 1) && !gt(1, 1));
}
///
deprecated
@safe unittest
{
int x = 42;
bool xyz(int a, int b) { return a * x < b / x; }
auto foo = &xyz;
foo(4, 5);
alias zyx = binaryReverseArgs!(foo);
assert(zyx(5, 4) == foo(4, 5));
}
/**
Negates predicate `pred`.
Params:
pred = A string or a callable
Returns:
A function which calls `pred` and returns the logical negation of its
return value.
*/
template not(alias pred)
{
auto not(T...)(auto ref T args)
{
static if (is(typeof(!pred(args))))
return !pred(args);
else static if (T.length == 1)
return !unaryFun!pred(args);
else static if (T.length == 2)
return !binaryFun!pred(args);
else
static assert(0);
}
}
///
@safe unittest
{
import std.algorithm.searching : find;
import std.functional;
import std.uni : isWhite;
string a = " Hello, world!";
assert(find!(not!isWhite)(a) == "Hello, world!");
}
@safe unittest
{
assert(not!"a != 5"(5));
assert(not!"a != b"(5, 5));
assert(not!(() => false)());
assert(not!(a => a != 5)(5));
assert(not!((a, b) => a != b)(5, 5));
assert(not!((a, b, c) => a * b * c != 125 )(5, 5, 5));
}
/**
$(LINK2 http://en.wikipedia.org/wiki/Partial_application, Partially
applies) $(D_PARAM fun) by tying its first argument to $(D_PARAM arg).
Params:
fun = A callable
arg = The first argument to apply to `fun`
Returns:
A new function which calls `fun` with `arg` plus the passed parameters.
*/
template partial(alias fun, alias arg)
{
static if (is(typeof(fun) == delegate) || is(typeof(fun) == function))
{
import std.traits : ReturnType;
ReturnType!fun partial(Parameters!fun[1..$] args2)
{
return fun(arg, args2);
}
}
else
{
auto partial(Ts...)(Ts args2)
{
static if (is(typeof(fun(arg, args2))))
{
return fun(arg, args2);
}
else
{
static string errormsg()
{
string msg = "Cannot call '" ~ fun.stringof ~ "' with arguments " ~
"(" ~ arg.stringof;
foreach (T; Ts)
msg ~= ", " ~ T.stringof;
msg ~= ").";
return msg;
}
static assert(0, errormsg());
}
}
}
}
///
@safe unittest
{
int fun(int a, int b) { return a + b; }
alias fun5 = partial!(fun, 5);
assert(fun5(6) == 11);
// Note that in most cases you'd use an alias instead of a value
// assignment. Using an alias allows you to partially evaluate template
// functions without committing to a particular type of the function.
}
// tests for partially evaluating callables
@safe unittest
{
static int f1(int a, int b) { return a + b; }
assert(partial!(f1, 5)(6) == 11);
int f2(int a, int b) { return a + b; }
int x = 5;
assert(partial!(f2, x)(6) == 11);
x = 7;
assert(partial!(f2, x)(6) == 13);
static assert(partial!(f2, 5)(6) == 11);
auto dg = &f2;
auto f3 = &partial!(dg, x);
assert(f3(6) == 13);
static int funOneArg(int a) { return a; }
assert(partial!(funOneArg, 1)() == 1);
static int funThreeArgs(int a, int b, int c) { return a + b + c; }
alias funThreeArgs1 = partial!(funThreeArgs, 1);
assert(funThreeArgs1(2, 3) == 6);
static assert(!is(typeof(funThreeArgs1(2))));
enum xe = 5;
alias fe = partial!(f2, xe);
static assert(fe(6) == 11);
}
// tests for partially evaluating templated/overloaded callables
@safe unittest
{
static auto add(A, B)(A x, B y)
{
return x + y;
}
alias add5 = partial!(add, 5);
assert(add5(6) == 11);
static assert(!is(typeof(add5())));
static assert(!is(typeof(add5(6, 7))));
// taking address of templated partial evaluation needs explicit type
auto dg = &add5!(int);
assert(dg(6) == 11);
int x = 5;
alias addX = partial!(add, x);
assert(addX(6) == 11);
static struct Callable
{
static string opCall(string a, string b) { return a ~ b; }
int opCall(int a, int b) { return a * b; }
double opCall(double a, double b) { return a + b; }
}
Callable callable;
assert(partial!(Callable, "5")("6") == "56");
assert(partial!(callable, 5)(6) == 30);
assert(partial!(callable, 7.0)(3.0) == 7.0 + 3.0);
static struct TCallable
{
auto opCall(A, B)(A a, B b)
{
return a + b;
}
}
TCallable tcallable;
assert(partial!(tcallable, 5)(6) == 11);
static assert(!is(typeof(partial!(tcallable, "5")(6))));
static A funOneArg(A)(A a) { return a; }
alias funOneArg1 = partial!(funOneArg, 1);
assert(funOneArg1() == 1);
static auto funThreeArgs(A, B, C)(A a, B b, C c) { return a + b + c; }
alias funThreeArgs1 = partial!(funThreeArgs, 1);
assert(funThreeArgs1(2, 3) == 6);
static assert(!is(typeof(funThreeArgs1(1))));
auto dg2 = &funOneArg1!();
assert(dg2() == 1);
}
/**
Takes multiple functions and adjoins them together.
Params:
F = the call-able(s) to adjoin
Returns:
A new function which returns a $(REF Tuple, std,typecons). Each of the
elements of the tuple will be the return values of `F`.
Note: In the special case where only a single function is provided
($(D F.length == 1)), adjoin simply aliases to the single passed function
(`F[0]`).
*/
template adjoin(F...)
if (F.length == 1)
{
alias adjoin = F[0];
}
/// ditto
template adjoin(F...)
if (F.length > 1)
{
auto adjoin(V...)(auto ref V a)
{
import std.typecons : tuple;
static if (F.length == 2)
{
return tuple(F[0](a), F[1](a));
}
else static if (F.length == 3)
{
return tuple(F[0](a), F[1](a), F[2](a));
}
else
{
import std.format : format;
import std.range : iota;
return mixin (q{tuple(%(F[%s](a)%|, %))}.format(iota(0, F.length)));
}
}
}
///
@safe unittest
{
import std.functional, std.typecons : Tuple;
static bool f1(int a) { return a != 0; }
static int f2(int a) { return a / 2; }
auto x = adjoin!(f1, f2)(5);
assert(is(typeof(x) == Tuple!(bool, int)));
assert(x[0] == true && x[1] == 2);
}
@safe unittest
{
import std.typecons : Tuple;
static bool F1(int a) { return a != 0; }
auto x1 = adjoin!(F1)(5);
static int F2(int a) { return a / 2; }
auto x2 = adjoin!(F1, F2)(5);
assert(is(typeof(x2) == Tuple!(bool, int)));
assert(x2[0] && x2[1] == 2);
auto x3 = adjoin!(F1, F2, F2)(5);
assert(is(typeof(x3) == Tuple!(bool, int, int)));
assert(x3[0] && x3[1] == 2 && x3[2] == 2);
bool F4(int a) { return a != x1; }
alias eff4 = adjoin!(F4);
static struct S
{
bool delegate(int) @safe store;
int fun() { return 42 + store(5); }
}
S s;
s.store = (int a) { return eff4(a); };
auto x4 = s.fun();
assert(x4 == 43);
}
@safe unittest
{
import std.meta : staticMap;
import std.typecons : Tuple, tuple;
alias funs = staticMap!(unaryFun, "a", "a * 2", "a * 3", "a * a", "-a");
alias afun = adjoin!funs;
assert(afun(5) == tuple(5, 10, 15, 25, -5));
static class C{}
alias IC = immutable(C);
IC foo(){return typeof(return).init;}
Tuple!(IC, IC, IC, IC) ret1 = adjoin!(foo, foo, foo, foo)();
static struct S{int* p;}
alias IS = immutable(S);
IS bar(){return typeof(return).init;}
enum Tuple!(IS, IS, IS, IS) ret2 = adjoin!(bar, bar, bar, bar)();
}
/**
Composes passed-in functions $(D fun[0], fun[1], ...).
Params:
fun = the call-able(s) or `string`(s) to compose into one function
Returns:
A new function `f(x)` that in turn returns $(D fun[0](fun[1](...(x)))...).
See_Also: $(LREF pipe)
*/
template compose(fun...)
{
static if (fun.length == 1)
{
alias compose = unaryFun!(fun[0]);
}
else static if (fun.length == 2)
{
// starch
alias fun0 = unaryFun!(fun[0]);
alias fun1 = unaryFun!(fun[1]);
// protein: the core composition operation
typeof({ E a; return fun0(fun1(a)); }()) compose(E)(E a)
{
return fun0(fun1(a));
}
}
else
{
// protein: assembling operations
alias compose = compose!(fun[0], compose!(fun[1 .. $]));
}
}
///
@safe unittest
{
import std.algorithm.comparison : equal;
import std.algorithm.iteration : map;
import std.array : split;
import std.conv : to;
// First split a string in whitespace-separated tokens and then
// convert each token into an integer
assert(compose!(map!(to!(int)), split)("1 2 3").equal([1, 2, 3]));
}
/**
Pipes functions in sequence. Offers the same functionality as $(D
compose), but with functions specified in reverse order. This may
lead to more readable code in some situation because the order of
execution is the same as lexical order.