-
Notifications
You must be signed in to change notification settings - Fork 2
/
SM_netFusion.py
executable file
·210 lines (174 loc) · 7.12 KB
/
SM_netFusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Main function of SM_netFusion framework for a fast and accurate classification.
# Details can be found in the original paper:
# Islem Mhiri and Islem Rekik. "Supervised Multi-topology Network
# Cross-diffusion for Population-driven Brain Network Atlas Estimation"
#
# ---------------------------------------------------------------------
# This file contains the implementation of three key steps of our SM_netFusion framework:
# (1) Class-specific feature extraction and clustering,
# (2) Class-specific supervised multi-topology network cross-diffusion and
# (3) Discriminative connectional biomarker identification:
#
# [AC1,AC2,ind] = SM_netFusion(train_data,train_Labels,Nf,displays)
#
# Inputs:
#
# train_data: ((n/5) × 4) × m × m) tensor stacking the symmetric matrices of the training subjects
# n the total number of subjects
# m the number of nodes
#
# train_Labels: ((n/5) × 4) × 1) vector of training labels (e.g., -1, 1)
#
# Nf: Number of selected features
#
# displays: Boolean variables [0, 1].
# if displays = 1 ==> display(Atlas of group 1, Atlas of group 2, top features matrix and the circular graph)
# if displays = 0 ==> no display
# Outputs:
# AC1: (m × m) matrix stacking the atlas of group 1
#
# AC2: (m × m) matrix stacking the atlas of group 2
#
# ind: (Nf × 1) vector stacking the indices of the top disciminative features
#
#
# To evaluate our framework we used Leave-One-Out cross validation strategy.
#To test SM-netFusion on random data, we defined the function 'simulateData' where the size of the dataset is chosen by the user.
# ---------------------------------------------------------------------
# Copyright 2020 Birkan Ak, Istanbul Technical University.
# Please cite the above paper if you use this code.
# All rights reserved.
# """
#------------------------------------------------------------------------------
import numpy as np
import SNF_all
# import snf
import SIMLR_PY.SIMLR as SIMLR
import matplotlib.pyplot as plt
# NOTE THAT THIS IS HEAVILY REFERENCED FROM NAGFS-PY
def SM_netFusion(train_data, train_Labels, Nf, displayResults):
XC1 = np.empty((0, train_data.shape[2], train_data.shape[2]), int)
XC2 = np.empty((0, train_data.shape[2], train_data.shape[2]), int)
for i in range(len(train_Labels)):
if train_Labels[i] == 1:
XC1 = np.append(XC1, [train_data[i, :, :]], axis=0)
else:
XC2 = np.append(XC2, [train_data[i, :, :]], axis=0)
# SIMLR PART, extraction of each cluster for both classes below.
k = np.empty((0, XC1.shape[1] * XC1.shape[1]), int)
for i in range(XC1.shape[0]):
k1 = np.concatenate(XC1[i])
k = np.append(k, [k1.reshape(XC1.shape[1] * XC1.shape[1])], axis=0)
simlr = SIMLR.SIMLR_LARGE(2, 4, 0)
S1, F1, val1, ind1 = simlr.fit(k)
y_pred_X1 = simlr.fast_minibatch_kmeans(F1, 2)
kk = np.empty((0, XC2.shape[1] * XC2.shape[1]), int)
for i in range(XC2.shape[0]):
kk1 = np.concatenate(XC2[i])
kk = np.append(kk, [kk1.reshape(XC2.shape[1] * XC2.shape[1])], axis=0)
simlr = SIMLR.SIMLR_LARGE(2, 4, 0)
S2, F2, val2, ind2 = simlr.fit(kk)
y_pred_X2 = simlr.fast_minibatch_kmeans(F2, 2)
# Below is the same steps as NAGFS, except we will not need the third one, so we don't create a variable and skip the last else if.
Ca1 = np.empty((0, XC1.shape[2], XC1.shape[2]), int)
Ca2 = np.empty((0, XC1.shape[2], XC1.shape[2]), int)
for i in range(len(y_pred_X1)):
if y_pred_X1[i] == 0:
Ca1 = np.append(Ca1, [XC1[i, :, :]], axis=0)
Ca1 = np.abs(Ca1)
# TODO Maybe add Ln1() and Ln2() but I don't know it yet.
elif y_pred_X1[i] == 1:
Ca2 = np.append(Ca2, [XC1[i, :, :]], axis=0)
Ca2 = np.abs(Ca2)
Cn1 = np.empty((0, XC2.shape[2], XC2.shape[2]), int)
Cn2 = np.empty((0, XC2.shape[2], XC2.shape[2]), int)
for i in range(len(y_pred_X2)):
if y_pred_X2[i] == 0:
Cn1 = np.append(Cn1, [XC2[i, :, :]], axis=0)
Cn1 = np.abs(Cn1)
elif y_pred_X2[i] == 1:
Cn2 = np.append(Cn2, [XC2[i, :, :]], axis=0)
Cn2 = np.abs(Cn2)
# SNF part
class1 = []
if Ca1.shape[0] > 1:
for i in range(Ca1.shape[0]):
class1.append(Ca1[i, :, :])
affinity_networks = SNF_all.make_affinity(class1, metric='euclidean', K=20, mu=0.5)
AC11 = SNF_all.SNF_all(affinity_networks, K=20)
class1 = []
else:
AC11 = Ca1[0]
class1 = []
if Ca2.shape[0] > 1:
for i in range(Ca2.shape[0]):
class1.append(Ca2[i, :, :])
affinity_networks = SNF_all.make_affinity(class1, metric='euclidean', K=20, mu=0.5)
AC12 = SNF_all.SNF_all(affinity_networks, K=20)
class1 = []
else:
AC12 = Ca2[0]
if Cn1.shape[0] > 1:
class1 = []
for i in range(Cn1.shape[0]):
class1.append(Cn1[i, :, :])
affinity_networks = SNF_all.make_affinity(class1, metric='euclidean', K=20, mu=0.5)
AC21 = SNF_all.SNF_all(affinity_networks, K=20) # First local network atlas for C2 group
class1 = []
else:
AC21 = Cn1[0]
class1 = []
if Cn2.shape[0] > 1:
for i in range(Cn2.shape[0]):
class1.append(Cn2[i, :, :])
affinity_networks = SNF_all.make_affinity(class1, metric='euclidean', K=20, mu=0.5)
AC22 = SNF_all.SNF_all(affinity_networks, K=20) # Second local network atlas for C2 group
class1 = []
else:
AC22 = Cn2[0]
AC1 = SNF_all.SNF_all([AC11, AC12], K=20)
AC2 = SNF_all.SNF_all([AC21, AC22], K=20)
# 5 most discriminative connectivities are determined below and being indexed in array
D0 = np.abs(AC1 - AC2)
D = np.triu(D0)
D1 = D[np.triu_indices(AC1.shape[0], 1)]
D1 = D1.transpose()
D2 = np.sort(D1)
D2 = D2[::-1]
Dif = D2[0:Nf]
D3 = []
for i in D1:
D3.append(i)
ind = []
for i in range(len(Dif)):
ind.append(D3.index(Dif[i]))
# DISPLAY RESULTS PART BELOW
coord = []
for i in range(len(Dif)):
for j in range(D0.shape[0]):
for k in range(D0.shape[1]):
if Dif[i] == D0[j][k]:
coord.append([j, k])
topFeatures = np.zeros((D0.shape[0], D0.shape[1]))
s = 0
ss = 0
for i in range(len(Dif) * 2):
topFeatures[coord[i][0]][coord[i][1]] = Dif[s]
ss += 1
if ss == 2:
s += 1
ss = 0
if displayResults == 1:
plt.imshow(topFeatures)
plt.title('Top features')
plt.colorbar()
plt.show()
plt.imshow(AC1)
plt.title('Atlas 1')
plt.colorbar()
plt.show()
plt.imshow(AC2)
plt.title('Atlas 2')
plt.colorbar()
plt.show()
return AC1, AC2, ind