-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
606 lines (547 loc) · 23.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
from util.config import params_setup, logging_setup
from netlist import netlist, parse_netlist
from sym import parse_sym
# from ckt.ckt import Sfa
from ckt.graph import build_graph
from train.train import *
import matplotlib.pyplot as plt
import networkx as nx
import dgl
import numpy as np
import pickle
import time
def init_netlist(para):
netlist = dict()
for n in para.netlist:
netlist_file = open(n, 'r')
netlist_str = netlist_file.read()
netlist_file.close()
name = n.split('/')[-1][0:-3]
netlist[name] = parse_netlist.parse_hspice(netlist_str)
return netlist
def init_sym(para, t):
sym = dict()
if t == 'sym':
for n in para.sym:
sym_file = open(n, 'r')
sym_str = sym_file.read()
sym_file.close()
name = n.split('/')[-1][0:-4]
sym[name] = parse_sym.parse(sym_str)
elif t == 's3det':
for n in para.s3det:
sym_file = open(n, 'r')
sym_str = sym_file.read()
sym_file.close()
name = n.split('/')[-1][0:-10]
sym[name] = parse_sym.parse(sym_str)
elif t == 'sfa':
for n in para.sfa:
sym_file = open(n, 'r')
sym_str = sym_file.read()
sym_file.close()
name = n.split('/')[-1][0:-4]
sym[name] = parse_sym.parse(sym_str)
return sym
def init_s3det_pairs(para):
pairs = dict()
for n in para.s3det_pair:
name = n.split('/')[-1][0:-5]
pair_file = open(n, 'r')
pairs[name] = list()
for line in pair_file:
tokens = line.rstrip('\n').split(' ')
assert len(tokens) == 2
if tokens[0] <= tokens[1]:
pairs[name].append([tokens[0], tokens[1]])
else:
pairs[name].append([tokens[1], tokens[0]])
pair_file.close()
return pairs
def printCkt(subCkt, prefix, showDev=True, showPassiveOnly=True):
print(prefix + subCkt.name_suffix + ' ' + subCkt.type + ' ' + str(subCkt.level))
if showDev == True:
for dev in subCkt.allDevices:
if showPassiveOnly:
if dev.isPassive():
print('| ' + prefix + dev.name_suffix + ' ' + dev.type + ' ' + str(dev.level))
else:
print('| ' + prefix + dev.name_suffix + ' ' + dev.type + ' ' + str(dev.level))
for ckt in subCkt.subCkts:
printCkt(ckt, '| ' + prefix, showDev, showPassiveOnly)
def setTrainedDevFeature(topCkt, node_embeddings):
for cktName, ckt in topCkt.items():
for i in range(len(node_embeddings[cktName])):
ckt.allDevices[i].feat = node_embeddings[cktName][i]
def embedSubCktFeature(topCkt, G_nx_dict):
for cktName, ckt in topCkt.items():
for subCkt in ckt.allSubCkts:
subG = G_nx_dict[cktName][subCkt.name]
if subG.number_of_nodes() > 0 and subG.number_of_edges() > 0:
# print('Graph nodes {} edges {}'.format(subG.number_of_nodes(), subG.number_of_edges()))
feats = []
for dev in subCkt.allDevices:
feats.append(dev.feat)
simpG = nx.DiGraph()
for n, d in subG.nodes(data=True):
simpG.add_node(n, device=d['device'])
for u, v, d in subG.edges(data=True):
type = d['in_type']
w = 0
if type == 'gate':
w = 1
elif type == 'drain':
w = 1
elif type == 'source':
w = 1
if simpG.has_edge(u, v):
simpG[u][v]['weight'] += w
else:
simpG.add_edge(u, v, weight=w)
assert simpG.number_of_nodes() == subG.number_of_nodes()
pg = nx.pagerank(simpG, alpha=0.85)
sorted_pg = sorted(pg.items(), key=lambda x: x[1], reverse=True)
num_cat = min(10, len(pg))
# num_cat = len(pg)
# feat_cat = torch.mean(torch.stack([ckt.allDevices[sorted_pg[i][0]].feat for i in range(num_cat)]), dim=0)
feat_cat = torch.cat([ckt.allDevices[sorted_pg[i][0]].feat for i in range(num_cat)])
subCkt.feat = feat_cat
if subG.number_of_edges() == 0:
# print(subCkt.name, subCkt.type, subG.number_of_nodes())
# if subG.number_of_nodes() > 1:
# print(subCkt.name)
# assert subG.number_of_nodes() == 1
feats = []
for n, d in subG.nodes(data=True):
feats.append(d['device'].feat)
feat_cat = torch.cat(feats)
subCkt.feat = feat_cat
assert subCkt.feat != None
return
def fitThreshold(ckt_size, avg_deg, avg_size, max_size):
if max_size > 0:
return min(0.99999, 0.95 + 0.95 / (1 + max_size))
else:
return 0.996
# return min(1, 0.95 + 2e-3 * avg_size)
# return min(1, 0.953 + 2.5e-3 * avg_deg)
# return max(1.0026 - 1.35e-5 * ckt_size, 0.95)
# return 0.986
# return max(1 - 3e-7 * ckt_size , 0.9)
def computeMatching(topCkt, use_dev, ignore, threshold, threshold2):
match_ckt = dict()
for cktName, ckt in topCkt.items():
if cktName in ignore:
continue
match_ckt[cktName] = dict()
for level in range(ckt.max_level + 1):
# subCkt matching
if len(ckt.allSubCkts) > 0:
subCkts = ckt.allSubCkts_level[level]
for i in range(len(subCkts)):
ckt_i = subCkts[i]
for j in range(i + 1, len(subCkts)):
ckt_j = subCkts[j]
if ckt_i != ckt_j and ckt_i.parentCkt == ckt_j.parentCkt:
feat_len_i = ckt_i.feat.shape[0]
feat_len_j = ckt_j.feat.shape[0]
if feat_len_i == feat_len_j:
# print(ckt_i.name, ckt_j.name, sim.item())
cos = nn.CosineSimilarity(dim=0, eps=1e-8)
sim = cos(ckt_i.feat, ckt_j.feat)
val = sim.item()
# print(ckt_i.name, ckt_j.name, val)
if val >= fitThreshold(len(ckt.allDevices), ckt.avg_indeg, ckt.avg_size, ckt.max_size):
# if val >= threshold:
parentCkt = ckt_i.parentCkt
if parentCkt.name not in match_ckt[cktName]:
match_ckt[cktName][parentCkt.name] = list()
if ckt_i.name_suffix <= ckt_j.name_suffix:
match_ckt[cktName][parentCkt.name].append((ckt_i.name_suffix, ckt_j.name_suffix))
else:
match_ckt[cktName][parentCkt.name].append((ckt_j.name_suffix, ckt_i.name_suffix))
# device matching
devices = ckt.devices_level[level]
for i in range(len(devices)):
dev_i = devices[i]
if dev_i.isNmos() or dev_i.isPmos():
if cktName not in use_dev:
continue
for j in range(i + 1, len(devices)):
dev_j = devices[j]
if dev_i.isNmos() or dev_i.isPmos():
if cktName not in use_dev:
continue
if dev_i != dev_j and dev_i.parentCkt == dev_j.parentCkt:
assert dev_i.feat.shape[0] == dev_j.feat.shape[0]
cos = nn.CosineSimilarity(dim=0, eps=1e-8)
sim = cos(dev_i.feat, dev_j.feat)
val = sim.item()
if val >= fitThreshold(len(ckt.allDevices), ckt.avg_indeg, ckt.avg_size, ckt.max_size):
# if val >= threshold2:
parentCkt = dev_i.parentCkt
if parentCkt.name not in match_ckt[cktName]:
match_ckt[cktName][parentCkt.name] = list()
if dev_i.name_suffix <= dev_j.name_suffix:
match_ckt[cktName][parentCkt.name].append((dev_i.name_suffix, dev_j.name_suffix))
else:
match_ckt[cktName][parentCkt.name].append((dev_j.name_suffix, dev_i.name_suffix))
return match_ckt
def _constructObjList(cktName, ckt, use_dev):
objs = list()
pure_passive = True
for dev in ckt.devices:
if dev.isNmos() or dev.isPmos():
pure_passive = False
break
if len(ckt.subCkts) > 0 or pure_passive or cktName in use_dev:
for subCkt in ckt.subCkts:
objs.append(subCkt)
for dev in ckt.devices:
if dev.isNmos() or dev.isPmos():
if cktName in use_dev:
objs.append(dev)
else:
objs.append(dev)
return objs
def _computeMatching2(cktName, ckt, objs, threshold, match_ckt):
pairs = list()
for i in range(len(objs) - 1):
obj_i = objs[i]
for j in range(i + 1, len(objs)):
obj_j = objs[j]
if len(ckt.subCkts) == 0 and obj_i.type != obj_j.type:
continue
if obj_i.isDev != obj_j.isDev:
continue
if obj_i.name <= obj_j.name:
pairs.append([obj_i.name, obj_j.name])
else:
pairs.append([obj_j.name, obj_i.name])
if obj_i.feat.shape[0] == obj_j.feat.shape[0]:
cos = nn.CosineSimilarity(dim=0, eps=1e-8)
sim = cos(obj_i.feat, obj_j.feat)
val = sim.item()
if val >= threshold:
if ckt.name not in match_ckt[cktName]:
match_ckt[cktName][ckt.name] = list()
if obj_i.name_suffix <= obj_j.name_suffix:
match_ckt[cktName][ckt.name].append((obj_i.name_suffix, obj_j.name_suffix))
else:
match_ckt[cktName][ckt.name].append((obj_j.name_suffix, obj_i.name_suffix))
return pairs
def computeMatching2(topCkt, use_dev, ignore, threshold):
match_ckt = dict()
allPairs = dict()
for cktName, ckt in topCkt.items():
if cktName in ignore:
continue
match_ckt[cktName] = dict()
allPairs[cktName] = list()
th = threshold
th = fitThreshold(len(ckt.allDevices), ckt.avg_indeg, ckt.avg_size, ckt.max_size)
objs = _constructObjList(cktName, ckt, use_dev)
p1 = _computeMatching2(cktName, ckt, objs, th, match_ckt)
allPairs[cktName].extend(p1)
for subCkt in ckt.allSubCkts:
objs = _constructObjList(cktName, subCkt, use_dev)
p2 = _computeMatching2(cktName, subCkt, objs, th, match_ckt)
allPairs[cktName].extend(p2)
# print(cktName, len(allPairs[cktName]))
return match_ckt, allPairs
def computeStatistics(res, ans):
assert len(res) == len(ans)
true_pos, false_pos = 0., 0.
true_neg, false_neg = 0., 0.
for i in range(len(res)):
if res[i] == 1 and ans[i] == 1:
true_pos += 1
elif res[i] == 1 and ans[i] == 0:
false_pos += 1
elif res[i] == 0 and ans[i] == 0:
true_neg += 1
elif res[i] == 0 and ans[i] == 1:
false_neg += 1
else:
assert False
if true_pos == 0 and false_pos == 0:
precision = 1.
else:
precision = true_pos / (true_pos + false_pos)
if true_pos == 0 and false_neg == 0:
recall = 1.
else:
recall = true_pos / (true_pos + false_neg)
accuracy = (true_pos + true_neg) / (true_pos + true_neg + false_pos + false_neg)
if false_pos == 0 and true_neg == 0:
FPR = 0.
else:
FPR = false_pos / (false_pos + true_neg)
if precision == 0 and recall == 0:
F1 = 0.
else:
F1 = 2 * precision * recall / (precision + recall)
MCC = (true_pos * true_neg + false_pos * false_neg) / np.sqrt((true_pos + false_pos) * (true_pos + false_neg) * (true_neg + false_pos) * (true_neg + false_neg))
result = {
'true_pos': int(true_pos),
'false_pos': int(false_pos),
'true_neg': int(true_neg),
'false_neg': int(false_neg),
'precision': precision,
'recall': recall,
'accuracy': accuracy,
'FPR': FPR,
'F1': F1,
'MCC': MCC}
return result
def _computeAccuracy(cktName, ckt, use_dev, match_ckt, sym_ans):
res = []
ans = []
for level in range(ckt.max_level + 1):
if len(ckt.allSubCkts) > 0:
subCkts = ckt.allSubCkts_level[level]
for i in range(len(subCkts)):
ckt_i = subCkts[i]
for j in range(i + 1, len(subCkts)):
ckt_j = subCkts[j]
if ckt_i.parentCkt != ckt_j.parentCkt:
# res.append(0)
# ans.append(0)
continue
else:
parName = ckt_i.parentCkt.name
if ckt_i.name_suffix <= ckt_j.name_suffix:
tar = (ckt_i.name_suffix, ckt_j.name_suffix)
else:
tar = (ckt_j.name_suffix, ckt_i.name_suffix)
if parName in match_ckt[cktName] and tar in match_ckt[cktName][parName]:
res.append(1)
else:
res.append(0)
if parName in sym_ans[cktName] and tar in sym_ans[cktName][parName]:
ans.append(1)
else:
ans.append(0)
devices = ckt.devices_level[level]
for i in range(len(devices)):
dev_i = devices[i]
if dev_i.isNmos() or dev_i.isPmos():
if cktName not in use_dev:
continue
for j in range(i + 1, len(devices)):
dev_j = devices[j]
if dev_j.isNmos() or dev_j.isPmos():
if cktName not in use_dev:
continue
if dev_i.parentCkt != dev_j.parentCkt:
# res.append(0)
# ans.append(0)
continue
else:
parName = dev_i.parentCkt.name
if dev_i.name_suffix <= dev_j.name_suffix:
tar = (dev_i.name_suffix, dev_j.name_suffix)
else:
tar = (dev_j.name_suffix, dev_i.name_suffix)
if parName in match_ckt[cktName] and tar in match_ckt[cktName][parName]:
res.append(1)
else:
res.append(0)
if parName in sym_ans[cktName] and tar in sym_ans[cktName][parName]:
ans.append(1)
else:
ans.append(0)
return res, ans
def computeAccuracy(topCkt, use_dev, match_ckt, sym_ans):
result = dict()
for cktName, ckt in topCkt.items():
if cktName in sym_ans:
res, ans = _computeAccuracy(cktName, ckt, use_dev, match_ckt, sym_ans)
result[cktName] = computeStatistics(res, ans)
# print(cktName, result[cktName]['true_pos'], result[cktName]['false_pos'], result[cktName]['true_neg'], result[cktName]['false_neg'])
return result
def computeAccuracyPair(topCkt, pairs, match_ckt, sym_ans):
result = dict()
for cktName, ckt in topCkt.items():
if cktName in pairs and cktName in match_ckt and cktName in sym_ans:
res = []
ans = []
for pair in pairs[cktName]:
name_i, name_j = pair[0], pair[1]
name_i_suffix = name_i.split('/')[-1]
name_j_suffix = name_j.split('/')[-1]
parName_i = name_i[0:len(name_i) - len(name_i_suffix) - 1]
parName_j = name_j[0:len(name_j) - len(name_j_suffix) - 1]
# print(parName_i)
assert parName_i == parName_j
if name_i_suffix <= name_j_suffix:
tar = (name_i_suffix, name_j_suffix)
else:
tar = (name_j_suffix, name_i_suffix)
# print(tar)
if parName_i in match_ckt[cktName] and tar in match_ckt[cktName][parName_i]:
res.append(1)
else:
res.append(0)
if parName_i in sym_ans[cktName] and tar in sym_ans[cktName][parName_i]:
ans.append(1)
else:
ans.append(0)
result[cktName] = computeStatistics(res, ans)
# else:
# res, ans = _computeAccuracy(cktName, ckt, use_dev, match_ckt, sym_ans)
# result[cktName] = computeStatistics(res, ans)
# print(cktName, len(pairs[cktName]))
return result
def computeAccuracyPair_multi(topCkt, pairs, match_ckt_multi, sym_ans):
return
def main():
start_time = time.time()
#####################################################
# Init graph and training
#####################################################
para = params_setup()
netlist = init_netlist(para)
G_nx_dict = dict()
topCkt = dict()
G_dgl_dict = dict()
for cktName, nl in netlist.items():
G_nx_dict[cktName], topCkt[cktName] = build_graph(nl)
# if cktName == 'CTDSM_CORE_NEW':
# printCkt(topCkt[cktName], '|-', showDev=True, showPassiveOnly=True)
# exit(0)
# return
ckt = topCkt[cktName]
G_nx = G_nx_dict[cktName]
sizes = [len(c.subCkts) for c in ckt.allSubCkts]
sizes.append(len(ckt.subCkts))
avg_size = sum(sizes) / len(sizes)
max_size = max(sizes)
G_nx_top = G_nx[ckt.name]
G_deg = []
for i, d in G_nx_top.in_degree:
ckt.allDevices[i].in_deg = d
G_deg.append(d)
avg_deg = sum(G_deg) / len(G_deg)
# nx.draw_networkx(G_nx)
# plt.show()
ckt.avg_indeg = int(avg_deg)
ckt.avg_size = int(avg_size)
ckt.max_size = int(max_size)
print('{}: graph nodes {} edges {} avg_deg {} avg_size {} max_size {}'.format(
cktName,
G_nx_top.number_of_nodes(),
G_nx_top.number_of_edges(),
ckt.avg_indeg,
ckt.avg_size,
ckt.max_size
))
G_dgl_dict[cktName] = initFeature(G_nx_top, ckt)
if para.load_model != '':
model = torch.load(para.load_model)
else:
model = train(G_dgl_dict, para)
if para.save_model != '':
torch.save(model, para.save_model)
# print(model.state_dict())
node_embeddings = inference(G_dgl_dict, model)
# for cktName, g in G_dgl_dict.items():
# node_embeddings[cktName] = g.ndata['feat']
setTrainedDevFeature(topCkt, node_embeddings)
embedSubCktFeature(topCkt, G_nx_dict)
# print(node_embeddings['CTDSM_CORE_NEW'][0])
# exit(0)
#####################################################
# Compute results
#####################################################
sym_ans = init_sym(para, 'sym')
s3det_pairs = init_s3det_pairs(para)
# use_dev = {'adc1', 'adc2'}
# ignore = {'adc1', 'adc2'}
use_dev = set()
ignore = set()
for cktName in netlist.keys():
ckt = topCkt[cktName]
if len(ckt.allSubCkts) == 0:
use_dev.add(cktName)
# ignore.add(cktName)
result = dict()
for th in list(np.linspace(1, 1, 1)):
print('Computing matching with threshold {}'.format(th))
# match_ckt = computeMatching(topCkt, use_dev, ignore, th, th)
match_ckt, pairs = computeMatching2(topCkt, use_dev, ignore, th)
result[(th, th)] = computeAccuracyPair(topCkt, pairs, match_ckt, sym_ans)
# print(result[th]['2019_10_01_5t_OTA'])
# result[th] = computeAccuracy(topCkt, use_dev, match_ckt, sym_ans)
# for th2 in list(np.linspace(0.94, 1, 61)):
# print('Computing matching with threshold {} {}'.format(th, th2))
# match_ckt = computeMatching(topCkt, use_dev, ignore, th, th)
# result[(th, th2)] = computeAccuracyS3det(topCkt, s3det_pairs, match_ckt, sym_ans)
# result[(th, th2)] = computeAccuracy(topCkt, use_dev, match_ckt, sym_ans)
print("--- %s seconds ---" % (time.time() - start_time))
# for cktName, ps in s3det_pairs.items():
# for p in pairs[cktName]:
# if p not in ps:
# print(p)
# with open(para.load_model + '_pg10_res_dev_nf.pickle', 'wb') as f:
# pickle.dump(result, f)
for th, res in result.items():
print('Threshold {}'.format(th))
for key, val in res.items():
# print(' {:<35} precision: {:<20} recall: {:<20} accuracy: {:<20} FPR: {:<22} F1: {:<22}'.format(
# key,
# val['precision'],
# val['recall'],
# val['accuracy'],
# val['FPR'],
# val['F1']))
print(' {:<35} TP: {} FP: {} TN: {} FN: {}'.format(
key,
val['true_pos'],
val['false_pos'],
val['true_neg'],
val['false_neg']))
print()
if para.s3det != None:
sym_s3det = init_sym(para, 's3det')
# res_s3det = computeAccuracy(topCkt, use_dev, sym_s3det, sym_ans)
res_s3det = computeAccuracyPair(topCkt, pairs, sym_s3det, sym_ans)
print('S3DET')
for key, val in res_s3det.items():
# print(val['true_pos'] + val['false_pos'] + val['true_neg'] + val['false_neg'])
# print(' {:<35} precision: {:<20} recall: {:<20} accuracy: {:<20} FPR: {:<22} F1: {:<22}'.format(
# key,
# val['precision'],
# val['recall'],
# val['accuracy'],
# val['FPR'],
# val['F1']))
print(' {:<35} TP: {} FP: {} TN: {} FN: {}'.format(
key,
val['true_pos'],
val['false_pos'],
val['true_neg'],
val['false_neg']))
print()
if para.sfa != None:
sym_sfa = init_sym(para, 'sfa')
res_sfa = computeAccuracyPair(topCkt, pairs, sym_sfa, sym_ans)
print('SFA')
for key, val in res_sfa.items():
# print(val['true_pos'] + val['false_pos'] + val['true_neg'] + val['false_neg'])
# print(' {:<35} precision: {:<20} recall: {:<20} accuracy: {:<20} FPR: {:<22} F1: {:<22}'.format(
# key,
# val['precision'],
# val['recall'],
# val['accuracy'],
# val['FPR'],
# val['F1']))
print(' {:<35} TP: {} FP: {} TN: {} FN: {}'.format(
key,
val['true_pos'],
val['false_pos'],
val['true_neg'],
val['false_neg']))
print()
if __name__ == "__main__":
main()