This project attempts to reproduce the results from "Spectral Normalization for Generative Adversarial Networks" by Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida. The Official Chainer implementation link
pip install pytorch pyyaml
python train.py --config_path configs/sn_cifar10_conditional.yml --batch_size 64
Inception Score:
python eval.py --config_path configs/sn_cifar10_conditional.yml --model_path=/path/to/model
Generate Samples:
python generate.py --config_path configs/sn_cifar10_conditional.yml --model_path=/path/to/model
model download
model download
The Inception Score of PyTorch implementation is roughly 1.57 less than tf implementation. The inception score of my implementation is 6.63 which is matched the claim(8.22 - 1.57) from the origin paper. from A Note on the Inception Score
- Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida. Spectral Normalization for Generative Adversarial Networks. ICLR2018. [OpenReview][sngans]
- Takeru Miyato, Masanori Koyama. cGANs with Projection Discriminator. ICLR2018. [OpenReview][pcgans]