-
Notifications
You must be signed in to change notification settings - Fork 1
/
dummy1.m~
59 lines (45 loc) · 1.85 KB
/
dummy1.m~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
% Demo of Time Domain ICA with Natural Gradient Algorithm
% with dummy signal (sin).
close all; clear all; clc;
t=0:pi/100:10*pi; %time series (sumbu-x)
s1=sin(0.2*t); %sinyal dari sumber 1
s2=sin(2*t); %sinyal dari sumber 2
figure(1)
subplot(211); plot(s1);
subplot(212); plot(s2);
x1=0.1*s1+0.9*s2; %sinyal yang diterima mic1/left ear
x2=-0.3*s2+0.9*s1; %sinyal yang diterima mic2/right ear
mic_1=x1; %Reading file from microphone #1.
mic_2=x2; %Reading file from microphone #2.
% Plot sinyal input TDICA
figure(2)
subplot(211); plot(mic_1);
subplot(212); plot(mic_2);
mix=[mic_1;mic_2]; %mencampur file suara
%P=number of data points, NxP matrix
[N,P]=size(mix); %P=sampled time=50000;N=number of input=3
% for manualy mixing sources
% permute=randperm(N); %generate a permutation vector
% x=mix(permute,:); %time-scrambled inputs for stationarity
x=mix;
% pre processing (whitening/sphering)
mx=mean(mix'); %menghitung rata2
c=cov(mix'); %menghitung kovarian/simpangan baku
x=x-mx'*ones(1,P); %campuran-rata2
wz=2*inv(sqrtm(c)); %untuk mendapatkan matrix dekorelasi
x=wz*x; %dekorelasi campuran shg cov(x')=4*eye(N)
%inisiasi matriks pemisah
w=eye(N); %matriks identitas square dg dimensi N
M=size(w,2); %mencari dimensi matriks w
sweep=0; oldw=w; olddelta=ones(1,N*N);
Id=eye(M);
% proses pemisahan
L=0.0001; B=30; for I=1:100, sep; end; %ITERASI TDICA
% Pemisahan sinyal suara
uu=w^-1/wz\mix; % make unmixed sources
uu11=uu(1,:);
uu12=uu(2,:);
% Plot sinyal estimasi TDICA/input FDICA
figure(3);
subplot(211); plot(uu11);
subplot(212); plot(uu12);