forked from AlexeyAB/darknet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnightmare.c
303 lines (253 loc) · 9.25 KB
/
nightmare.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#include "network.h"
#include "parser.h"
#include "blas.h"
#include "utils.h"
// ./darknet nightmare cfg/extractor.recon.cfg ~/trained/yolo-coco.conv frame6.png -reconstruct -iters 500 -i 3 -lambda .1 -rate .01 -smooth 2
float abs_mean(float *x, int n)
{
int i;
float sum = 0;
for (i = 0; i < n; ++i){
sum += fabs(x[i]);
}
return sum/n;
}
void calculate_loss(float *output, float *delta, int n, float thresh)
{
int i;
float mean = mean_array(output, n);
float var = variance_array(output, n);
for(i = 0; i < n; ++i){
if(delta[i] > mean + thresh*sqrt(var)) delta[i] = output[i];
else delta[i] = 0;
}
}
void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh, int norm)
{
//scale_image(orig, 2);
//translate_image(orig, -1);
net->n = max_layer + 1;
int dx = rand()%16 - 8;
int dy = rand()%16 - 8;
int flip = rand()%2;
image crop = crop_image(orig, dx, dy, orig.w, orig.h);
image im = resize_image(crop, (int)(orig.w * scale), (int)(orig.h * scale));
if(flip) flip_image(im);
resize_network(net, im.w, im.h);
layer last = net->layers[net->n-1];
//net->layers[net->n - 1].activation = LINEAR;
image delta = make_image(im.w, im.h, im.c);
network_state state = {0};
#ifdef GPU
state.input = cuda_make_array(im.data, im.w*im.h*im.c);
state.delta = cuda_make_array(im.data, im.w*im.h*im.c);
forward_network_gpu(*net, state);
copy_ongpu(last.outputs, last.output_gpu, 1, last.delta_gpu, 1);
cuda_pull_array(last.delta_gpu, last.delta, last.outputs);
calculate_loss(last.delta, last.delta, last.outputs, thresh);
cuda_push_array(last.delta_gpu, last.delta, last.outputs);
backward_network_gpu(*net, state);
cuda_pull_array(state.delta, delta.data, im.w*im.h*im.c);
cuda_free(state.input);
cuda_free(state.delta);
#else
state.input = im.data;
state.delta = delta.data;
forward_network(*net, state);
copy_cpu(last.outputs, last.output, 1, last.delta, 1);
calculate_loss(last.output, last.delta, last.outputs, thresh);
backward_network(*net, state);
#endif
if(flip) flip_image(delta);
//normalize_array(delta.data, delta.w*delta.h*delta.c);
image resized = resize_image(delta, orig.w, orig.h);
image out = crop_image(resized, -dx, -dy, orig.w, orig.h);
/*
image g = grayscale_image(out);
free_image(out);
out = g;
*/
//rate = rate / abs_mean(out.data, out.w*out.h*out.c);
if(norm) normalize_array(out.data, out.w*out.h*out.c);
axpy_cpu(orig.w*orig.h*orig.c, rate, out.data, 1, orig.data, 1);
/*
normalize_array(orig.data, orig.w*orig.h*orig.c);
scale_image(orig, sqrt(var));
translate_image(orig, mean);
*/
//translate_image(orig, 1);
//scale_image(orig, .5);
//normalize_image(orig);
constrain_image(orig);
free_image(crop);
free_image(im);
free_image(delta);
free_image(resized);
free_image(out);
}
void smooth(image recon, image update, float lambda, int num)
{
int i, j, k;
int ii, jj;
for(k = 0; k < recon.c; ++k){
for(j = 0; j < recon.h; ++j){
for(i = 0; i < recon.w; ++i){
int out_index = i + recon.w*(j + recon.h*k);
for(jj = j-num; jj <= j + num && jj < recon.h; ++jj){
if (jj < 0) continue;
for(ii = i-num; ii <= i + num && ii < recon.w; ++ii){
if (ii < 0) continue;
int in_index = ii + recon.w*(jj + recon.h*k);
update.data[out_index] += lambda * (recon.data[in_index] - recon.data[out_index]);
}
}
}
}
}
}
void reconstruct_picture(network net, float *features, image recon, image update, float rate, float momentum, float lambda, int smooth_size, int iters)
{
int iter = 0;
for (iter = 0; iter < iters; ++iter) {
image delta = make_image(recon.w, recon.h, recon.c);
network_state state = {0};
#ifdef GPU
state.input = cuda_make_array(recon.data, recon.w*recon.h*recon.c);
state.delta = cuda_make_array(delta.data, delta.w*delta.h*delta.c);
state.truth = cuda_make_array(features, get_network_output_size(net));
forward_network_gpu(net, state);
backward_network_gpu(net, state);
cuda_pull_array(state.delta, delta.data, delta.w*delta.h*delta.c);
cuda_free(state.input);
cuda_free(state.delta);
cuda_free(state.truth);
#else
state.input = recon.data;
state.delta = delta.data;
state.truth = features;
forward_network(net, state);
backward_network(net, state);
#endif
axpy_cpu(recon.w*recon.h*recon.c, 1, delta.data, 1, update.data, 1);
smooth(recon, update, lambda, smooth_size);
axpy_cpu(recon.w*recon.h*recon.c, rate, update.data, 1, recon.data, 1);
scal_cpu(recon.w*recon.h*recon.c, momentum, update.data, 1);
//float mag = mag_array(recon.data, recon.w*recon.h*recon.c);
//scal_cpu(recon.w*recon.h*recon.c, 600/mag, recon.data, 1);
constrain_image(recon);
free_image(delta);
}
}
void run_nightmare(int argc, char **argv)
{
srand(time(0));
if(argc < 4){
fprintf(stderr, "usage: %s %s [cfg] [weights] [image] [layer] [options! (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[2];
char *weights = argv[3];
char *input = argv[4];
int max_layer = atoi(argv[5]);
int range = find_int_arg(argc, argv, "-range", 1);
int norm = find_int_arg(argc, argv, "-norm", 1);
int rounds = find_int_arg(argc, argv, "-rounds", 1);
int iters = find_int_arg(argc, argv, "-iters", 10);
int octaves = find_int_arg(argc, argv, "-octaves", 4);
float zoom = find_float_arg(argc, argv, "-zoom", 1.);
float rate = find_float_arg(argc, argv, "-rate", .04);
float thresh = find_float_arg(argc, argv, "-thresh", 1.);
float rotate = find_float_arg(argc, argv, "-rotate", 0);
float momentum = find_float_arg(argc, argv, "-momentum", .9);
float lambda = find_float_arg(argc, argv, "-lambda", .01);
char *prefix = find_char_arg(argc, argv, "-prefix", 0);
int reconstruct = find_arg(argc, argv, "-reconstruct");
int smooth_size = find_int_arg(argc, argv, "-smooth", 1);
network net = parse_network_cfg(cfg);
load_weights(&net, weights);
char *cfgbase = basecfg(cfg);
char *imbase = basecfg(input);
set_batch_network(&net, 1);
image im = load_image_color(input, 0, 0);
if(0){
float scale = 1;
if(im.w > 512 || im.h > 512){
if(im.w > im.h) scale = 512.0/im.w;
else scale = 512.0/im.h;
}
image resized = resize_image(im, scale*im.w, scale*im.h);
free_image(im);
im = resized;
}
float *features = 0;
image update;
if (reconstruct){
resize_network(&net, im.w, im.h);
int zz = 0;
network_predict(net, im.data);
image out_im = get_network_image(net);
image crop = crop_image(out_im, zz, zz, out_im.w-2*zz, out_im.h-2*zz);
//flip_image(crop);
image f_im = resize_image(crop, out_im.w, out_im.h);
free_image(crop);
printf("%d features\n", out_im.w*out_im.h*out_im.c);
im = resize_image(im, im.w, im.h);
f_im = resize_image(f_im, f_im.w, f_im.h);
features = f_im.data;
int i;
for(i = 0; i < 14*14*512; ++i){
features[i] += rand_uniform(-.19, .19);
}
free_image(im);
im = make_random_image(im.w, im.h, im.c);
update = make_image(im.w, im.h, im.c);
}
int e;
int n;
for(e = 0; e < rounds; ++e){
fprintf(stderr, "Iteration: ");
fflush(stderr);
for(n = 0; n < iters; ++n){
fprintf(stderr, "%d, ", n);
fflush(stderr);
if(reconstruct){
reconstruct_picture(net, features, im, update, rate, momentum, lambda, smooth_size, 1);
//if ((n+1)%30 == 0) rate *= .5;
show_image(im, "reconstruction");
#ifdef OPENCV
wait_key_cv(10);
#endif
}else{
int layer = max_layer + rand()%range - range/2;
int octave = rand()%octaves;
optimize_picture(&net, im, layer, 1/pow(1.33333333, octave), rate, thresh, norm);
}
}
fprintf(stderr, "done\n");
if(0){
image g = grayscale_image(im);
free_image(im);
im = g;
}
char buff[256];
if (prefix){
sprintf(buff, "%s/%s_%s_%d_%06d",prefix, imbase, cfgbase, max_layer, e);
}else{
sprintf(buff, "%s_%s_%d_%06d",imbase, cfgbase, max_layer, e);
}
printf("%d %s\n", e, buff);
save_image(im, buff);
//show_image(im, buff);
//wait_key_cv(0);
if(rotate){
image rot = rotate_image(im, rotate);
free_image(im);
im = rot;
}
image crop = crop_image(im, im.w * (1. - zoom)/2., im.h * (1.-zoom)/2., im.w*zoom, im.h*zoom);
image resized = resize_image(crop, im.w, im.h);
free_image(im);
free_image(crop);
im = resized;
}
}