-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdditiveBaseGame.py
164 lines (135 loc) · 5.89 KB
/
AdditiveBaseGame.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from random import choice, sample
import numpy as np
from helpers import *
from collections import defaultdict
from collections import Counter
from scipy.sparse import dok_matrix
import os
import json
class AdditiveBaseGameAgent:
"""Agent that can only formulate additive constructions"""
def __init__(self, B=10, eta=1):
self.freqs = Counter()
self.eta = eta
self.b0 = np.ceil((B+1)/2).astype(int)
self.bases = list(range(self.b0, B+1))
def favoured_bases(self, **kwargs):
# Eta is the factor used in Hurfords other criterion,
# Using eta=1 (default) corresponds to the max-freq criterion
eta = self.eta if 'eta' not in kwargs else kwargs['eta']
if len(self.freqs) > 0:
maximum = max(self.freqs.values())
else:
maximum = 0
return [b for b in self.bases
if b in self.freqs and self.freqs[b] >= maximum/eta]
def express(self, n):
# Find all favoured bases that could express n, or pick
# a random other base if none of the favoured bases works
candidates = [b for b in self.favoured_bases() if n <= b+b]
if len(candidates) == 0:
candidates = [b for b in self.bases if n <= b+b]
base = choice(candidates)
return [base, n - base]
def AdditiveBGSimulation(T=5000, N=200, res=10, B=10,
init_base=10, init_freq=1, init_frac=0, **kwargs):
"""Run Hurfords experiment. With a certain resolution we compute for every
agent which bases it favours. This is stored in one-hot format. So if there
are 5 potential bases (6,7,8,9,10), N agents and T timesteps, you get an
(T/res) x N x 5 array.
T: Timesteps
N: Number of agents
"""
agents = [AdditiveBaseGameAgent(B=B, **kwargs) for _ in range(N)]
b0 = np.ceil((B+1)/2).astype(int)
_num_poss_bases = len(range(b0, B+1))
# Bias
if init_frac > 0:
num_biased_agents = round(init_frac * N)
for agent in agents[:num_biased_agents]:
agent.freqs[init_base] = init_freq
# Quantities to track
D = int(np.ceil(T / res)) # num datapoints
num_bases = np.zeros(D)
num_unique_bases = np.zeros(D)
base_counts = dok_matrix((D, _num_poss_bases), dtype=int)
successes = np.zeros(D)
for t in range(T):
s, h = sample(range(N), 2)
speaker, hearer = agents[s], agents[h]
n = np.random.randint(B+1, 2*B+1)
expr = speaker.express(n)
base = max(expr)
success = base in hearer.favoured_bases()
hearer.freqs[base] += 1
if t % res == 0:
idx = t//res
# Get one-hot representation of the favoured bases of all agents
fav_bases = []
for a in agents:
fav = a.favoured_bases()
onehot = np.array([b in fav for b in range(b0, B+1)])
fav_bases.append(onehot)
fav_bases = np.array(fav_bases)
# Store relevant quantities
base_counts[idx,:] = fav_bases.sum(axis=0)
num_bases[idx] = fav_bases.sum()
num_unique_bases[idx] = (fav_bases.sum(axis=0) > 0).sum()
successes[idx] = success
return base_counts, num_bases, num_unique_bases, successes
def save_ABG_simulation(params, results, directory, name):
base_counts, num_bases, num_unique_bases, successes = results
_base = os.path.join(directory, name)
if type(base_counts[0]) == dok_matrix:
base_counts = np.array([M.todense() for M in base_counts])
np.save(_base+'-base-counts.npy', base_counts, allow_pickle=False)
np.savetxt(_base+'-num-bases.txt.gz', np.array(num_bases))
np.savetxt(_base+'-num-unique-bases.txt.gz', np.array(num_unique_bases))
np.savetxt(_base+'-successes.txt.gz', np.array(successes))
json.dump(params, open(_base+'-params.json', 'w'))
def load_ABG_simulation(directory, name, params_only=False):
_base = os.path.join(directory, name)
params = json.load(open(_base+'-params.json', 'r'))
b0 = np.ceil((params['B']+1)/2).astype(int)
params['bases'] = range(b0, params['B']+1)
if params_only: return params
base_counts = np.load(_base+'-base-counts.npy', allow_pickle=False)
num_bases = np.loadtxt(_base+'-num-bases.txt.gz')
num_unique_bases = np.loadtxt(_base+'-num-unique-bases.txt.gz')
successes = np.loadtxt(_base+'-successes.txt.gz')
return base_counts, num_bases, num_unique_bases, successes, params
if __name__ == '__main__':
import argparse
import os
import pickle
import json
# Define all command line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--runs', type=int, required=True)
parser.add_argument('--res', type=int, required=True)
parser.add_argument('--timesteps', type=int, required=True)
parser.add_argument('--agents', type=int, required=True)
parser.add_argument('--B', type=int, required=True)
parser.add_argument('--eta', type=float, required=True)
parser.add_argument('--name', type=str, required=True)
parser.add_argument('--out', type=str, default='results')
parser.add_argument('--initfreq', type=float)
parser.add_argument('--initbase', type=int)
# Optional
parser.add_argument('--initfrac', type=float, default=1)
args = parser.parse_args()
if os.path.isdir(args.out) == False:
raise NotADirectoryError('The output directory could not be found.')
params = dict(
N=args.agents,
T=args.timesteps,
B=args.B,
res=args.res,
eta=args.eta,
init_frac=args.initfrac,
init_base=args.initbase,
init_freq=args.initfreq)
results = repeat_simulation(AdditiveBGSimulation, args.runs, **params)
params['name'] = args.name
params['runs'] = args.runs
save_ABG_simulation(params, results, args.out, args.name)