Skip to content

Commit a3dea91

Browse files
committed
update readme
1 parent 40ddfed commit a3dea91

File tree

1 file changed

+32
-31
lines changed

1 file changed

+32
-31
lines changed

README.md

Lines changed: 32 additions & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -5,38 +5,38 @@
55
* RFB-SSD[Receptive Field Block Net for Accurate and Fast Object Detection]
66

77
### VOC2007 Test
8-
| System | *mAP* | **FPS** (Titan X Maxwell) |
9-
|:-------|:-----:|:-------:|
10-
| [Faster R-CNN (VGG16)](https://github.com/ShaoqingRen/faster_rcnn) | 73.2 | 7 |
11-
| [YOLOv2 (Darknet-19)](http://pjreddie.com/darknet/yolo/) | 78.6 | 40 |
12-
| [R-FCN (ResNet-101)](https://github.com/daijifeng001/R-FCN)| 80.5| 9 |
13-
| [SSD300* (VGG16)](https://github.com/weiliu89/caffe/tree/ssd) | 77.2 | 46 |
14-
| [SSD512* (VGG16)](https://github.com/weiliu89/caffe/tree/ssd) | 79.8 | 19 |
15-
| RFBNet300 (VGG16) | **80.5** |83 |
16-
| RFBNet512 (VGG16) | **82.2** | 38 |
17-
| SSD300 (VGG) |77.8|**150 (1080Ti)**|
18-
| FSSD300 (VGG)|78.8|120 (1080Ti)|
8+
| System | *mAP* | **FPS** (Titan X Maxwell) |
9+
| :--------------------------------------- | :------: | :-----------------------: |
10+
| [Faster R-CNN (VGG16)](https://github.com/ShaoqingRen/faster_rcnn) | 73.2 | 7 |
11+
| [YOLOv2 (Darknet-19)](http://pjreddie.com/darknet/yolo/) | 78.6 | 40 |
12+
| [R-FCN (ResNet-101)](https://github.com/daijifeng001/R-FCN) | 80.5 | 9 |
13+
| [SSD300* (VGG16)](https://github.com/weiliu89/caffe/tree/ssd) | 77.2 | 46 |
14+
| [SSD512* (VGG16)](https://github.com/weiliu89/caffe/tree/ssd) | 79.8 | 19 |
15+
| RFBNet300 (VGG16) | **80.5** | 83 |
16+
| RFBNet512 (VGG16) | **82.2** | 38 |
17+
| SSD300 (VGG) | 77.8 | **150 (1080Ti)** |
18+
| FSSD300 (VGG) | 78.8 | 120 (1080Ti) |
1919

2020
### COCO
21-
| System | *test-dev mAP* | **Time** (Titan X Maxwell) |
22-
|:-------|:-----:|:-------:|
23-
| [Faster R-CNN++ (ResNet-101)](https://github.com/KaimingHe/deep-residual-networks) | 34.9 | 3.36s |
24-
| [YOLOv2 (Darknet-19)](http://pjreddie.com/darknet/yolo/) | 21.6 | 25ms|
25-
| [SSD300* (VGG16)](https://github.com/weiliu89/caffe/tree/ssd) | 25.1 | 22ms |
26-
| [SSD512* (VGG16)](https://github.com/weiliu89/caffe/tree/ssd) | 28.8 | 53ms |
27-
| [RetinaNet500 (ResNet-101-FPN)](https://arxiv.org/pdf/1708.02002.pdf) | 34.4| 90ms|
28-
| RFBNet300 (VGG16) | **29.9** |**15ms\*** |
29-
| RFBNet512 (VGG16) | **33.8** | **30ms\*** |
30-
| RFBNet512-E (VGG16) | **34.4** | **33ms\*** |
21+
| System | *test-dev mAP* | **Time** (Titan X Maxwell) |
22+
| :--------------------------------------- | :------------: | :------------------------: |
23+
| [Faster R-CNN++ (ResNet-101)](https://github.com/KaimingHe/deep-residual-networks) | 34.9 | 3.36s |
24+
| [YOLOv2 (Darknet-19)](http://pjreddie.com/darknet/yolo/) | 21.6 | 25ms |
25+
| [SSD300* (VGG16)](https://github.com/weiliu89/caffe/tree/ssd) | 25.1 | 22ms |
26+
| [SSD512* (VGG16)](https://github.com/weiliu89/caffe/tree/ssd) | 28.8 | 53ms |
27+
| [RetinaNet500 (ResNet-101-FPN)](https://arxiv.org/pdf/1708.02002.pdf) | 34.4 | 90ms |
28+
| RFBNet300 (VGG16) | **29.9** | **15ms\*** |
29+
| RFBNet512 (VGG16) | **33.8** | **30ms\*** |
30+
| RFBNet512-E (VGG16) | **34.4** | **33ms\*** |
3131

3232

3333
*Note*: **\*** The speed here is tested on the newest pytorch and cudnn version (0.2.0 and cudnnV6), which is obviously faster than the speed reported in the paper (using pytorch-0.1.12 and cudnnV5).
3434

3535
### MobileNet
36-
|System |COCO *minival mAP*| **\#parameters**|
37-
|:-------|:-----:|:-------:|
38-
|[SSD MobileNet](https://arxiv.org/abs/1704.04861)| 19.3| 6.8M|
39-
|RFB MobileNet| 20.7\* | 7.4M|
36+
| System | COCO *minival mAP* | **\#parameters** |
37+
| :--------------------------------------- | :----------------: | :--------------: |
38+
| [SSD MobileNet](https://arxiv.org/abs/1704.04861) | 19.3 | 6.8M |
39+
| RFB MobileNet | 20.7\* | 7.4M |
4040

4141
\*: slightly better than the original ones in the paper (20.5).
4242

@@ -48,14 +48,15 @@
4848
5. [Models](#models)
4949

5050
## Installation
51-
- Install [PyTorch-0.2.0](http://pytorch.org/) by selecting your environment on the website and running the appropriate command.
52-
- Clone this repository. This repository is mainly based on [ssd.pytorch](https://github.com/amdegroot/ssd.pytorch) and [Chainer-ssd](https://github.com/Hakuyume/chainer-ssd), a huge thank to them.
51+
- Install [PyTorch-0.2.0+](http://pytorch.org/) by selecting your environment on the website and running the appropriate command.
52+
- Clone this repository. This repository is mainly based on[RFBNet](https://github.com/ruinmessi/RFBNet), [ssd.pytorch](https://github.com/amdegroot/ssd.pytorch) and [Chainer-ssd](https://github.com/Hakuyume/chainer-ssd), a huge thank to them.
5353
* Note: We currently only support Python 3+.
5454
- Compile the nms and coco tools:
5555
```Shell
5656
./make.sh
5757
```
58-
*Note*: Check you GPU architecture support in utils/build.py, line 131. Default is:
58+
Note*: Check you GPU architecture support in utils/build.py, line 131. Default is:
59+
5960
```
6061
'nvcc': ['-arch=sm_52',
6162
```
@@ -101,7 +102,7 @@ $COCO/images/val2014/
101102

102103
## Training
103104
- First download the fc-reduced [VGG-16](https://arxiv.org/abs/1409.1556) PyTorch base network weights at: https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
104-
or from our [BaiduYun Driver](https://pan.baidu.com/s/1jIP86jW)
105+
or from our [BaiduYun Driver](https://pan.baidu.com/s/1jIP86jW)
105106
- MobileNet pre-trained basenet is ported from [MobileNet-Caffe](https://github.com/shicai/MobileNet-Caffe), which achieves slightly better accuracy rates than the original one reported in the [paper](https://arxiv.org/abs/1704.04861), weight file is available at: https://drive.google.com/open?id=13aZSApybBDjzfGIdqN1INBlPsddxCK14 or [BaiduYun Driver](https://pan.baidu.com/s/1dFKZhdv).
106107

107108
- By default, we assume you have downloaded the file in the `RFBNet/weights` dir:
@@ -120,7 +121,7 @@ python train_RFB.py -d VOC -v RFB_vgg -s 300
120121
* -v: choose backbone version, RFB_VGG, RFB_E_VGG or RFB_mobile.
121122
* -s: image size, 300 or 512.
122123
* You can pick-up training from a checkpoint by specifying the path as one of the training parameters (again, see `train_RFB.py` for options)
123-
124+
124125
## Evaluation
125126
To evaluate a trained network:
126127

@@ -131,7 +132,7 @@ By default, it will directly output the mAP results on VOC2007 *test* or COCO *m
131132

132133
## Models
133134

134-
* 07+12 [RFB_Net300](https://drive.google.com/open?id=1V3DjLw1ob89G8XOuUn7Jmg_o-8k_WM3L), [BaiduYun Driver](https://pan.baidu.com/s/1bplRosf)
135+
* 07+12 [RFB_Net300](https://drive.google.com/open?id=1V3DjLw1ob89G8XOuUn7Jmg_o-8k_WM3L), [BaiduYun Driver](https://pan.baidu.com/s/1bplRosf),[FSSD300](https://drive.google.com/open?id=1xhgdxCF_HuC3SP6ALhhTeC5RTmuoLzgC),[SSD300](https://drive.google.com/open?id=10sM_yWSN8vRZdh6Sf0CILyMfcoJiCNtn)
135136
* COCO [RFB_Net512_E](https://drive.google.com/open?id=1pHDc6Xg9im3affOr7xaimXaRNOHtbaPM), [BaiduYun Driver](https://pan.baidu.com/s/1o8dxrom)
136137
* COCO [RFB_Mobile Net300](https://drive.google.com/open?id=1vmbTWWgeMN_qKVWOeDfl1EN9c7yHPmOe), [BaiduYun Driver](https://pan.baidu.com/s/1bp4ik1L)
137138

0 commit comments

Comments
 (0)