EigenRand is a header-only library for Eigen, providing vectorized random number engines and vectorized random distribution generators.
Since the classic Random functions of Eigen relies on an old C function rand()
,
there is no way to control random numbers and no guarantee for quality of generated numbers.
In addition, Eigen's Random is slow because rand()
is hard to vectorize.
EigenRand provides a variety of random distribution functions similar to C++11 standard's random functions, which can be vectorized and easily integrated into Eigen's expressions of Matrix and Array.
You can get 5~10 times speed by just replacing old Eigen's Random or unvectorizable c++11 random number generators with EigenRand.
- C++11-compatible Random Number Generator
- 5~10 times faster than non-vectorized functions
- Header-only (like Eigen)
- Can be easily integrated with Eigen's expressions
- Currently supports only x86 and x86-64 architecture
- Eigen 3.3.4 ~ 3.3.9
- C++11-compatible compilers
https://bab2min.github.io/eigenrand/
Function | Generator | Scalar Type | Description | Equivalent to |
---|---|---|---|---|
Eigen::Rand::balanced |
Eigen::Rand::BalancedGen |
float, double | generates real values in the [-1, 1] range | Eigen::DenseBase<Ty>::Random for floating point types |
Eigen::Rand::beta |
Eigen::Rand::BetaGen |
float, double | generates real values on a beta distribution | |
Eigen::Rand::cauchy |
Eigen::Rand::CauchyGen |
float, double | generates real values on the Cauchy distribution. | std::cauchy_distribution |
Eigen::Rand::chiSquared |
Eigen::Rand::ChiSquaredGen |
float, double | generates real values on a chi-squared distribution. | std::chi_squared_distribution |
Eigen::Rand::exponential |
Eigen::Rand::ExponentialGen |
float, double | generates real values on an exponential distribution. | std::exponential_distribution |
Eigen::Rand::extremeValue |
Eigen::Rand::ExtremeValueGen |
float, double | generates real values on an extreme value distribution. | std::extreme_value_distribution |
Eigen::Rand::fisherF |
Eigen::Rand::FisherFGen |
float, double | generates real values on the Fisher's F distribution. | std::fisher_f_distribution |
Eigen::Rand::gamma |
Eigen::Rand::GammaGen |
float, double | generates real values on a gamma distribution. | std::gamma_distribution |
Eigen::Rand::lognormal |
Eigen::Rand::LognormalGen |
float, double | generates real values on a lognormal distribution. | std::lognormal_distribution |
Eigen::Rand::normal |
Eigen::Rand::StdNormalGen , Eigen::Rand::NormalGen |
float, double | generates real values on a normal distribution. | std::normal_distribution |
Eigen::Rand::studentT |
Eigen::Rand::StudentTGen |
float, double | generates real values on the Student's t distribution. | std::student_t_distribution |
Eigen::Rand::uniformReal |
Eigen::Rand::UniformRealGen |
float, double | generates real values in the [0, 1) range. |
std::generate_canonical |
Eigen::Rand::weibull |
Eigen::Rand::WeibullGen |
float, double | generates real values on the Weibull distribution. | std::weibull_distribution |
Function | Generator | Scalar Type | Description | Equivalent to |
---|---|---|---|---|
Eigen::Rand::binomial |
Eigen::Rand::BinomialGen |
int | generates integers on a binomial distribution. | std::binomial_distribution |
Eigen::Rand::discrete |
Eigen::Rand::DiscreteGen |
int | generates random integers on a discrete distribution. | std::discrete_distribution |
Eigen::Rand::geometric |
Eigen::Rand::GeometricGen |
int | generates integers on a geometric distribution. | std::geometric_distribution |
Eigen::Rand::negativeBinomial |
Eigen::Rand::NegativeBinomialGen |
int | generates integers on a negative binomial distribution. | std::negative_binomial_distribution |
Eigen::Rand::poisson |
Eigen::Rand::PoissonGen |
int | generates integers on the Poisson distribution. | std::poisson_distribution |
Eigen::Rand::randBits |
Eigen::Rand::RandbitsGen |
int | generates integers with random bits. | Eigen::DenseBase<Ty>::Random for integer types |
Eigen::Rand::uniformInt |
Eigen::Rand::UniformIntGen |
int | generates integers in the [min, max] range. |
std::uniform_int_distribution |
Generator | Description | Equivalent to |
---|---|---|
Eigen::Rand::MultinomialGen |
generates real vectors on a multinomial distribution | scipy.stats.multinomial in Python |
Eigen::Rand::DirichletGen |
generates real vectors on a Dirichlet distribution | scipy.stats.dirichlet in Python |
Eigen::Rand::MvNormalGen |
generates real vectors on a multivariate normal distribution | scipy.stats.multivariate_normal in Python |
Eigen::Rand::WishartGen |
generates real matrices on a Wishart distribution | scipy.stats.wishart in Python |
Eigen::Rand::InvWishartGen |
generates real matrices on a inverse Wishart distribution | scipy.stats.invwishart in Python |
Description | Equivalent to | |
---|---|---|
Eigen::Rand::Vmt19937_64 |
a vectorized version of Mersenne Twister algorithm. It generates two 64bit random integers simultaneously with SSE2 and four integers with AVX2. | std::mt19937_64 |
The following charts show the relative speed-up of EigenRand compared to references(equivalent functions of C++ std or Eigen).
The following charts are about multivariate distributions.
The following result is a measure of the time in seconds it takes to generate 1M random numbers. It shows the average of 20 times.
C++ std (or Eigen) | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (SSSE3) | EigenRand (AVX) | EigenRand (AVX2) | |
---|---|---|---|---|---|---|
balanced * |
9.0 | 5.9 | 1.5 | 1.4 | 1.3 | 0.9 |
balanced (double)* |
8.7 | 6.4 | 3.3 | 2.9 | 1.7 | 1.7 |
binomial(20, 0.5) |
400.8 | 118.5 | 32.7 | 36.6 | 30.0 | 22.7 |
binomial(50, 0.01) |
71.7 | 22.5 | 7.7 | 8.3 | 7.9 | 6.6 |
binomial(100, 0.75) |
340.5 | 454.5 | 91.7 | 111.5 | 106.3 | 86.4 |
cauchy |
36.1 | 54.4 | 6.1 | 7.1 | 4.7 | 3.9 |
chiSquared |
80.5 | 249.5 | 64.6 | 58.0 | 29.4 | 28.8 |
discrete (int32) |
- | 14.0 | 2.9 | 2.6 | 2.4 | 1.7 |
discrete (fp32) |
- | 21.9 | 4.3 | 4.0 | 3.6 | 3.0 |
discrete (fp64) |
72.4 | 21.4 | 6.9 | 6.5 | 4.9 | 3.7 |
exponential |
31.0 | 25.3 | 5.5 | 5.3 | 3.3 | 2.9 |
extremeValue |
66.0 | 60.1 | 11.9 | 10.7 | 6.5 | 5.8 |
fisherF(1, 1) |
178.1 | 35.1 | 33.2 | 39.3 | 22.9 | 18.7 |
fisherF(5, 5) |
141.8 | 415.2 | 136.47 | 172.4 | 92.4 | 74.9 |
gamma(0.2, 1) |
207.8 | 211.4 | 54.6 | 51.2 | 26.9 | 27.0 |
gamma(5, 3) |
80.9 | 60.0 | 14.3 | 13.3 | 11.4 | 8.0 |
gamma(10.5, 1) |
81.1 | 248.6 | 63.3 | 58.5 | 29.2 | 28.4 |
geometric |
43.0 | 22.4 | 6.7 | 7.4 | 5.8 | |
lognormal |
66.3 | 55.4 | 12.8 | 11.8 | 6.2 | 6.2 |
negativeBinomial(10, 0.5) |
312.0 | 301.4 | 82.9 | 100.6 | 95.3 | 77.9 |
negativeBinomial(20, 0.25) |
483.4 | 575.9 | 125.0 | 158.2 | 148.4 | 119.5 |
normal(0, 1) |
38.1 | 28.5 | 6.8 | 6.2 | 3.8 | 3.7 |
normal(2, 3) |
37.6 | 29.0 | 7.3 | 6.6 | 4.0 | 3.9 |
poisson(1) |
31.8 | 25.2 | 9.8 | 10.8 | 9.7 | 8.2 |
poisson(16) |
231.8 | 274.1 | 66.2 | 80.7 | 74.4 | 64.2 |
randBits |
5.2 | 5.4 | 1.4 | 1.3 | 1.1 | 1.0 |
studentT(1) |
122.7 | 120.1 | 15.3 | 19.2 | 12.6 | 9.4 |
studentT(20) |
102.2 | 111.1 | 15.4 | 19.2 | 12.2 | 9.4 |
uniformInt(0~63) |
22.4 | 4.7 | 1.7 | 1.6 | 1.4 | 1.1 |
uniformInt(0~100k) |
21.8 | 10.1 | 6.2 | 6.7 | 6.6 | 5.4 |
uniformReal |
12.9 | 5.7 | 1.4 | 1.2 | 1.4 | 0.7 |
weibull |
41.0 | 35.8 | 17.7 | 15.5 | 8.5 | 8.5 |
- Since there is no equivalent class to
balanced
in C++11 std, we used Eigen::DenseBase::Random instead.
C++ std | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (SSSE3) | EigenRand (AVX) | EigenRand (AVX2) | |
---|---|---|---|---|---|---|
Mersenne Twister(int32) | 4.7 | 5.6 | 4.0 | 3.7 | 3.5 | 3.6 |
Mersenne Twister(int64) | 5.4 | 5.3 | 4.0 | 3.9 | 3.4 | 2.6 |
Python 3.6 + scipy 1.5.2 + numpy 1.19.2 | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (SSSE3) | EigenRand (AVX) | EigenRand (AVX2) | |
---|---|---|---|---|---|---|
Dirichlet(4) |
6.47 | 6.60 | 2.39 | 2.49 | 1.34 | 1.67 |
Dirichlet(100) |
75.95 | 189.97 | 66.60 | 72.11 | 38.86 | 34.98 |
InvWishart(4) |
140.18 | 7.62 | 4.21 | 4.54 | 3.58 | 3.39 |
InvWishart(50) |
1510.47 | 1737.4 | 697.39 | 733.69 | 604.59 | 554.006 |
Multinomial(4, t=20) |
3.32 | 4.12 | 0.95 | 1.06 | 1.00 | 1.03 |
Multinomial(4, t=1000) |
3.51 | 192.51 | 35.99 | 39.58 | 27.84 | 35.45 |
Multinomial(100, t=20) |
69.19 | 4.80 | 2.00 | 2.20 | 2.28 | 2.09 |
Multinomial(100, t=1000) |
139.74 | 179.43 | 49.48 | 56.19 | 40.78 | 43.18 |
MvNormal(4) |
2.32 | 0.96 | 0.36 | 0.37 | 0.25 | 0.30 |
MvNormal(100) |
49.09 | 57.18 | 17.17 | 18.51 | 10.82 | 11.03 |
Wishart(4) |
71.19 | 5.28 | 2.70 | 2.93 | 2.04 | 1.94 |
Wishart(50) |
1185.26 | 1360.49 | 492.91 | 517.44 | 359.03 | 324.60 |
C++ std (or Eigen) | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (SSSE3) | EigenRand (AVX) | |
---|---|---|---|---|---|
balanced * |
6.5 | 7.3 | 1.1 | 1.4 | 1.1 |
balanced (double)* |
6.6 | 7.5 | 2.6 | 3.3 | 2.4 |
binomial(20, 0.5) |
38.8 | 164.9 | 27.7 | 29.3 | 24.9 |
binomial(50, 0.01) |
21.9 | 27.6 | 6.6 | 7.0 | 6.3 |
binomial(100, 0.75) |
52.2 | 421.9 | 93.6 | 94.8 | 89.1 |
cauchy |
36.0 | 30.4 | 5.6 | 5.8 | 4.0 |
chiSquared |
84.4 | 152.2 | 44.1 | 48.7 | 26.2 |
discrete (int32) |
- | 12.4 | 2.1 | 2.6 | 2.2 |
discrete (fp32) |
- | 23.2 | 3.4 | 3.7 | 3.4 |
discrete (fp64) |
48.6 | 22.9 | 4.2 | 5.0 | 4.6 |
exponential |
22.0 | 18.0 | 4.1 | 4.9 | 3.2 |
extremeValue |
36.2 | 32.0 | 8.7 | 9.5 | 5.1 |
fisherF(1, 1) |
158.2 | 73.1 | 32.3 | 32.1 | 18.1 |
fisherF(5, 5) |
177.3 | 310.1 | 127.0 | 121.8 | 74.3 |
gamma(0.2, 1) |
69.8 | 80.4 | 28.5 | 33.8 | 19.2 |
gamma(5, 3) |
83.9 | 53.3 | 10.6 | 12.4 | 8.6 |
gamma(10.5, 1) |
83.2 | 150.4 | 43.3 | 48.4 | 26.2 |
geometric |
39.6 | 19.0 | 4.3 | 4.4 | 4.1 |
lognormal |
43.8 | 40.7 | 9.0 | 10.8 | 5.7 |
negativeBinomial(10, 0.5) |
217.4 | 274.8 | 71.6 | 73.7 | 68.2 |
negativeBinomial(20, 0.25) |
192.9 | 464.9 | 112.0 | 111.5 | 105.7 |
normal(0, 1) |
32.6 | 28.6 | 5.5 | 6.5 | 3.8 |
normal(2, 3) |
32.9 | 30.5 | 5.7 | 6.7 | 3.9 |
poisson(1) |
37.9 | 31.0 | 7.5 | 7.8 | 7.1 |
poisson(16) |
92.4 | 243.3 | 55.6 | 57.7 | 53.7 |
randBits |
6.5 | 6.5 | 1.1 | 1.3 | 1.1 |
studentT(1) |
115.0 | 54.1 | 15.5 | 15.7 | 8.3 |
studentT(20) |
121.2 | 53.8 | 15.8 | 16.0 | 8.2 |
uniformInt(0~63) |
20.2 | 9.8 | 1.8 | 1.8 | 1.6 |
uniformInt(0~100k) |
25.7 | 16.1 | 8.1 | 8.5 | 7.2 |
uniformReal |
12.7 | 7.0 | 1.0 | 1.2 | 1.1 |
weibull |
23.1 | 19.2 | 11.6 | 13.6 | 7.6 |
- Since there is no equivalent class to
balanced
in C++11 std, we used Eigen::DenseBase::Random instead.
C++ std | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (SSSE3) | EigenRand (AVX) | |
---|---|---|---|---|---|
Mersenne Twister(int32) | 6.2 | 6.4 | 1.7 | 2.0 | 1.8 |
Mersenne Twister(int64) | 6.4 | 6.3 | 2.5 | 3.1 | 2.4 |
Python 3.6 + scipy 1.5.2 + numpy 1.19.2 | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (SSSE3) | EigenRand (AVX) | |
---|---|---|---|---|---|
Dirichlet(4) |
3.54 | 3.29 | 1.25 | 1.25 | 0.83 |
Dirichlet(100) |
57.63 | 145.32 | 49.71 | 49.50 | 29.13 |
InvWishart(4) |
210.92 | 7.53 | 3.72 | 3.66 | 3.10 |
InvWishart(50) |
1980.73 | 1446.40 | 560.40 | 559.73 | 457.07 |
Multinomial(4, t=20) |
2.60 | 5.22 | 1.48 | 1.50 | 1.42 |
Multinomial(4, t=1000) |
3.90 | 208.75 | 29.19 | 29.50 | 27.70 |
Multinomial(100, t=20) |
47.71 | 7.09 | 3.71 | 3.63 | 3.60 |
Multinomial(100, t=1000) |
128.69 | 215.19 | 44.48 | 44.63 | 43.76 |
MvNormal(4) |
2.04 | 1.05 | 0.35 | 0.34 | 0.19 |
MvNormal(100) |
48.69 | 47.10 | 16.25 | 16.12 | 11.41 |
Wishart(4) |
81.11 | 13.24 | 9.87 | 9.81 | 5.90 |
Wishart(50) |
1419.02 | 1087.40 | 448.06 | 442.97 | 328.20 |
C++ std (or Eigen) | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (AVX) | EigenRand (AVX2) | |
---|---|---|---|---|---|
balanced * |
20.7 | 7.2 | 3.3 | 4.0 | 2.2 |
balanced (double)* |
21.9 | 8.8 | 6.7 | 4.3 | 4.3 |
binomial(20, 0.5) |
718.3 | 141.0 | 38.1 | 30.2 | 32.7 |
binomial(50, 0.01) |
61.5 | 21.4 | 7.5 | 6.5 | 8.0 |
binomial(100, 0.75) |
495.9 | 1042.5 | 100.6 | 95.2 | 93.0 |
cauchy |
71.6 | 30.0 | 6.8 | 6.4 | 3.0 |
chiSquared |
243.0 | 147.3 | 63.5 | 34.1 | 24.0 |
discrete (int32) |
- | 12.4 | 3.5 | 2.7 | 2.2 |
discrete (fp32) |
- | 19.2 | 5.1 | 3.6 | 3.7 |
discrete (fp64) |
83.9 | 19.0 | 6.7 | 7.4 | 4.6 |
exponential |
58.7 | 16.0 | 6.8 | 6.4 | 3.0 |
extremeValue |
64.6 | 27.7 | 13.5 | 9.8 | 5.5 |
fisherF(1, 1) |
178.7 | 75.2 | 35.3 | 28.4 | 17.5 |
fisherF(5, 5) |
491.0 | 298.4 | 125.8 | 87.4 | 60.5 |
gamma(0.2, 1) |
211.7 | 69.3 | 43.7 | 24.7 | 18.7 |
gamma(5, 3) |
272.5 | 42.3 | 17.6 | 17.2 | 8.5 |
gamma(10.5, 1) |
237.8 | 146.2 | 63.7 | 33.8 | 23.5 |
geometric |
49.3 | 17.0 | 7.0 | 5.8 | 5.4 |
lognormal |
169.8 | 37.6 | 12.7 | 7.2 | 5.0 |
negativeBinomial(10, 0.5) |
752.7 | 462.3 | 87.0 | 83.0 | 81.6 |
negativeBinomial(20, 0.25) |
611.4 | 855.3 | 123.7 | 125.3 | 116.6 |
normal(0, 1) |
78.4 | 21.1 | 6.9 | 4.6 | 2.9 |
normal(2, 3) |
77.2 | 22.3 | 6.8 | 4.8 | 3.1 |
poisson(1) |
77.4 | 28.9 | 10.0 | 8.1 | 10.1 |
poisson(16) |
312.9 | 485.5 | 63.6 | 61.5 | 60.5 |
randBits |
6.0 | 6.2 | 3.1 | 2.7 | 2.7 |
studentT(1) |
175.8 | 53.9 | 17.3 | 12.5 | 7.7 |
studentT(20) |
173.2 | 55.5 | 17.9 | 12.7 | 7.6 |
uniformInt(0~63) |
39.1 | 5.2 | 2.0 | 1.4 | 1.6 |
uniformInt(0~100k) |
38.5 | 12.3 | 7.6 | 6.0 | 7.7 |
uniformReal |
53.4 | 5.7 | 1.9 | 2.3 | 1.0 |
weibull |
75.1 | 44.3 | 18.5 | 14.3 | 7.9 |
- Since there is no equivalent class to
balanced
in C++11 std, we used Eigen::DenseBase::Random instead.
C++ std | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (AVX) | EigenRand (AVX2) | |
---|---|---|---|---|---|
Mersenne Twister(int32) | 6.5 | 6.4 | 5.6 | 5.1 | 4.5 |
Mersenne Twister(int64) | 6.6 | 6.5 | 6.9 | 5.9 | 5.1 |
Python 3.6 + scipy 1.5.2 + numpy 1.19.2 | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (AVX) | EigenRand (AVX2) | |
---|---|---|---|---|---|
Dirichlet(4) |
4.27 | 3.20 | 2.31 | 1.43 | 1.25 |
Dirichlet(100) |
69.61 | 150.33 | 67.01 | 47.34 | 32.47 |
InvWishart(4) |
482.87 | 14.52 | 8.88 | 13.17 | 11.28 |
InvWishart(50) |
2222.72 | 2211.66 | 902.34 | 775.36 | 610.60 |
Multinomial(4, t=20) |
2.99 | 5.41 | 1.99 | 1.92 | 1.78 |
Multinomial(4, t=1000) |
4.23 | 235.84 | 49.73 | 42.41 | 40.76 |
Multinomial(100, t=20) |
58.20 | 9.12 | 5.84 | 6.02 | 5.98 |
Multinomial(100, t=1000) |
130.54 | 234.40 | 72.99 | 66.36 | 55.28 |
MvNormal(4) |
2.25 | 1.89 | 0.35 | 0.32 | 0.25 |
MvNormal(100) |
57.71 | 68.80 | 24.40 | 18.28 | 13.05 |
Wishart(4) |
70.18 | 16.25 | 4.49 | 3.97 | 3.07 |
Wishart(50) |
1471.29 | 1641.73 | 628.58 | 485.68 | 349.81 |
C++ std (or Eigen) | EigenRand (SSE2) | EigenRand (AVX) | EigenRand (AVX2) | |
---|---|---|---|---|
balanced * |
20.8 | 1.9 | 2.0 | 1.4 |
balanced (double)* |
21.7 | 4.1 | 2.7 | 3.0 |
binomial(20, 0.5) |
416.0 | 27.7 | 28.9 | 29.1 |
binomial(50, 0.01) |
37.8 | 6.3 | 6.0 | 6.6 |
binomial(100, 0.75) |
309.1 | 72.4 | 66.0 | 67.0 |
cauchy |
42.2 | 4.8 | 5.1 | 2.7 |
chiSquared |
153.8 | 33.5 | 21.2 | 17.0 |
discrete (int32) |
- | 2.4 | 2.3 | 2.5 |
discrete (fp32) |
- | 2.6 | 2.3 | 3.5 |
discrete (fp64) |
55.8 | 5.1 | 4.7 | 4.3 |
exponential |
33.4 | 6.4 | 2.8 | 2.2 |
extremeValue |
39.4 | 7.8 | 4.6 | 4.0 |
fisherF(1, 1) |
103.9 | 25.3 | 14.9 | 11.7 |
fisherF(5, 5) |
295.7 | 85.5 | 58.3 | 44.8 |
gamma(0.2, 1) |
128.8 | 31.9 | 18.3 | 15.8 |
gamma(5, 3) |
156.1 | 9.7 | 8.0 | 5.0 |
gamma(10.5, 1) |
148.5 | 33.1 | 21.1 | 17.2 |
geometric |
27.1 | 6.6 | 4.3 | 4.1 |
lognormal |
104.0 | 6.6 | 4.7 | 3.5 |
negativeBinomial(10, 0.5) |
462.1 | 60.0 | 56.4 | 58.6 |
negativeBinomial(20, 0.25) |
357.6 | 84.5 | 80.6 | 78.4 |
normal(0, 1) |
48.8 | 4.2 | 3.7 | 2.3 |
normal(2, 3) |
48.8 | 4.5 | 3.8 | 2.4 |
poisson(1) |
46.4 | 7.9 | 7.4 | 8.2 |
poisson(16) |
192.4 | 43.2 | 40.4 | 40.9 |
randBits |
4.2 | 1.7 | 1.5 | 1.8 |
studentT(1) |
107.0 | 12.3 | 6.8 | 5.7 |
studentT(20) |
107.1 | 12.3 | 6.8 | 5.8 |
uniformInt(0~63) |
31.2 | 1.1 | 1.0 | 1.2 |
uniformInt(0~100k) |
27.7 | 5.6 | 5.6 | 5.4 |
uniformReal |
30.7 | 1.1 | 1.0 | 0.6 |
weibull |
46.5 | 10.6 | 6.4 | 5.2 |
- Since there is no equivalent class to
balanced
in C++11 std, we used Eigen::DenseBase::Random instead.
C++ std | EigenRand (SSE2) | EigenRand (AVX) | EigenRand (AVX2) | |
---|---|---|---|---|
Mersenne Twister(int32) | 5.0 | 3.4 | 3.4 | 3.3 |
Mersenne Twister(int64) | 5.1 | 3.9 | 3.9 | 3.3 |
Since vectorized mathematical functions may have a loss of precision, I measured how well the generated random number fits its actual distribution. 32768 samples were generated and Earth Mover's Distance between samples and its actual distribution was calculated for each distribution. Following table shows the average distance (and stdev.) of results performed 50 times for different seeds.
C++ std | EigenRand | |
---|---|---|
balanced * |
.0034(.0015) | .0034(.0015) |
chiSquared(7) |
.0260(.0091) | .0242(.0079) |
exponential(1) |
.0065(.0025) | .0072(.0022) |
extremeValue(1, 1) |
.0097(.0029) | .0088(.0025) |
gamma(0.2, 1) |
.0380(.0021) | .0377(.0025) |
gamma(1, 1) |
.0070(.0020) | .0065(.0023) |
gamma(5, 1) |
.0169(.0065) | .0170(.0051) |
lognormal(0, 1) |
.0072(.0029) | .0067(.0022) |
normal(0, 1) |
.0070(.0024) | .0073(.0020) |
uniformReal |
.0018(.0008) | .0017(.0007) |
weibull(2, 1) |
.0032(.0013) | .0031(.0010) |
(* Result of balanced
were from Eigen::Random, not C++ std)
The smaller value means that the sample result fits its distribution better. The results of EigenRand and C++ std appear to be equivalent within the margin of error.
MIT License
- Now
UniformRealGen
generates accurate double values. - Fixed a bug where non-vectorized double-type
NormalGen
would get stuck in an infinite loop. - New overloading functions
balanced
andbalancedLike
which generate values over[a, b]
were added.
- Now Eigen 3.3.4 - 3.3.6 versions are additionally supported.
- A compilation failure with some RNGs in
double
type was fixed. - An internal function name
plgamma
conflict with one ofSpecialFunctionsPacketMath.h
was fixed.
- A default constructor for
DiscreteGen
was added.
- Compiling errors in the environment
EIGEN_COMP_MINGW && __GXX_ABI_VERSION < 1004
was fixed.
- Potential cache conflict in generator was solved.
- Generator classes were added for efficient reusability.
- Multivariate distributions including
Multinomial
,Dirichlet
,MvNormal
,Wishart
,InvWishart
were added.
- Now
ParallelRandomEngineAdaptor
andMersenneTwister
use aligned array on heap.
- A new template class
ParallelRandomEngineAdaptor
yielding the same random sequence regardless of SIMD ISA was added.
- New distributions including
cauchy
,studentT
,fisherF
,uniformInt
,binomial
,negativeBinomial
,poisson
andgeometric
were added. - A new member function
uniform_real
forPacketRandomEngine
was added.
- The first version of
EigenRand