source("http://bioconductor.org/biocLite.R")
biocLite("limma")
library(devtools)
install_github("uarray", username="b3aver")
library(uarray)
trainingsetFN <- "data/trainingset.csv"
## or for a dataset provided with the package
## trainingsetFN <- system.file("extdata", "Brain_Cancer.csv", package="uarray")
trainingset <- read(trainingsetFN)
filteredTS <- gfilter(trainingset)
discretizedTS <- gdiscretize(filteredTS)
classificationModel <- train(discretizedTS$dataset, discretizedTS$intervals)
newsampleFN <- "data/newsample.csv"
newsample <- read(newsampleFN)
classify(newsample, classificationModel)
accuracy(validate(trainingset))
With the package are provided also the following datasets from MIDClass []:
- Brain_Cancer.csv
- BRC_01.csv
- BRC_2.csv
- Gastric_Cancer.csv
- Lung_Cancer_1.csv
- Lung_Cancer_2.csv
- Lymphoma_Cancer.csv
- Melanoma_Cancer.csv
- Myeloma_Cancer.csv
- Pacreatic_Cancer.csv
- Prostate_Cancer.csv
the paths to them can be retrieved with
system.file("extdata", "<dataset filename>", package="uarray")
Rosalba Giugno, Alfredo Pulvirenti, Luciano Cascione, Giuseppe Pigola, Alfredo
Ferro.
MIDClass: Microarray Data Classification by Association Rules and Gene
Expression Intervals.
MIDClass []
Smyth, G. K.
Linear models and empirical Bayes methods for assessing differentiale
expression in microarray experiments.
Statistical Applications in Genetics and Molecular Biology, (2004), Vol. 3,
No. 1, Article 3.
Limma []
J. Alcalá-Fdez, L. Sánchez, S. García, M.J. del Jesus, S. Ventura,
J.M. Garrell, J. Otero, C. Romero, J. Bacardit, V.M. Rivas, J.C. Fernández,
F. Herrera.
KEEL: A Software Tool to Assess Evolutionary Algorithms to Data Mining
Problems.
Soft Computing 13:3 (2009) 307-318, doi: 10.1007/s00500-008-0323-y.
J. Alcalá-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. García, L. Sánchez,
F. Herrera.
KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms
and Experimental Analysis Framework.
Journal of Multiple-Valued Logic and Soft Computing 17:2-3 (2011) 255-287.
Michael Hahsler, Christian Buchta, Bettina Grün and Kurt Hornik.
Introduction to arules – A computational environment for mining association
rules and frequent item sets