-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy pathStackGAN_model.py
607 lines (454 loc) · 23.9 KB
/
StackGAN_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
#==================================
# MC-GAN
# End-to-End GlyphNet + OrnaNet
# By Samaneh Azadi
#==================================
import numpy as np
import torch
import os
from collections import OrderedDict
from torch.autograd import Variable
import util.util as util
from util.image_pool import ImagePool
from .base_model import BaseModel
from . import networks
from scipy import misc
from torch import index_select, LongTensor
import random
import torchvision.transforms as transforms
class StackGANModel(BaseModel):
def name(self):
return 'StackGANModel'
def initialize(self, opt):
BaseModel.initialize(self, opt)
# define tensors
self.input_A0 = self.Tensor(opt.batchSize, opt.input_nc,
opt.fineSize, opt.fineSize)
self.input_B0 = self.Tensor(opt.batchSize, opt.output_nc,
opt.fineSize, opt.fineSize)
self.input_base = self.Tensor(opt.batchSize, opt.output_nc,
opt.fineSize, opt.fineSize)
# load/define networks
if self.opt.conv3d:
# one layer for considering a conv filter for each of the 26 channels
self.netG_3d = networks.define_G_3d(opt.input_nc, opt.input_nc, norm=opt.norm, groups=opt.grps, gpu_ids=self.gpu_ids)
# Generator of the GlyphNet
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf,
opt.which_model_netG, opt.norm, opt.use_dropout, self.gpu_ids)
#Generator of the OrnaNet as an Encoder and a Decoder
self.netE1 = networks.define_Enc(opt.input_nc_1, opt.output_nc_1, opt.ngf,
opt.which_model_netG, opt.norm, opt.use_dropout1, self.gpu_ids)
self.netDE1 = networks.define_Dec(opt.input_nc_1, opt.output_nc_1, opt.ngf,
opt.which_model_netG, opt.norm, opt.use_dropout1, self.gpu_ids)
if self.opt.conditional:
# not applicable for non-conditional case
use_sigmoid = opt.no_lsgan
if opt.which_model_preNet != 'none':
self.preNet_A = networks.define_preNet(self.opt.input_nc_1+self.opt.output_nc_1, self.opt.input_nc_1+self.opt.output_nc_1, which_model_preNet=opt.which_model_preNet,norm=opt.norm, gpu_ids=self.gpu_ids)
nif = opt.input_nc_1+opt.output_nc_1
netD_norm = opt.norm
self.netD1 = networks.define_D(nif, opt.ndf,
opt.which_model_netD,
opt.n_layers_D, netD_norm, use_sigmoid, True, self.gpu_ids)
if self.isTrain:
if self.opt.conv3d:
self.load_network(self.netG_3d, 'G_3d', opt.which_epoch)
self.load_network(self.netG, 'G', opt.which_epoch)
if self.opt.print_weights:
for key in self.netE1.state_dict().keys():
print key, 'random_init, mean,std:', torch.mean(self.netE1.state_dict()[key]),torch.std(self.netE1.state_dict()[key])
for key in self.netDE1.state_dict().keys():
print key, 'random_init, mean,std:', torch.mean(self.netDE1.state_dict()[key]),torch.std(self.netDE1.state_dict()[key])
if not self.isTrain:
print "Load generators from their pretrained models..."
if opt.no_Style2Glyph:
if self.opt.conv3d:
self.load_network(self.netG_3d, 'G_3d', opt.which_epoch)
self.load_network(self.netG, 'G', opt.which_epoch)
self.load_network(self.netE1, 'E1', opt.which_epoch1)
self.load_network(self.netDE1, 'DE1', opt.which_epoch1)
self.load_network(self.netD1, 'D1', opt.which_epoch1)
if opt.which_model_preNet != 'none':
self.load_network(self.preNet_A, 'PRE_A', opt.which_epoch1)
else:
if self.opt.conv3d:
self.load_network(self.netG_3d, 'G_3d', str(int(opt.which_epoch)+int(opt.which_epoch1)))
self.load_network(self.netG, 'G', str(int(opt.which_epoch)+int(opt.which_epoch1)))
self.load_network(self.netE1, 'E1', str(int(opt.which_epoch1)))
self.load_network(self.netDE1, 'DE1', str(int(opt.which_epoch1)))
self.load_network(self.netD1, 'D1', str(int(opt.which_epoch1)))
if opt.which_model_preNet != 'none':
self.load_network(self.preNet_A, 'PRE_A', opt.which_epoch1)
if self.isTrain:
if opt.continue_train:
print "Load StyleNet from its pretrained model..."
self.load_network(self.netE1, 'E1', opt.which_epoch1)
self.load_network(self.netDE1, 'DE1', opt.which_epoch1)
self.load_network(self.netD1, 'D1', opt.which_epoch1)
if opt.which_model_preNet != 'none':
self.load_network(self.preNet_A, 'PRE_A', opt.which_epoch1)
self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor)
if self.isTrain:
self.fake_AB1_pool = ImagePool(opt.pool_size)
self.old_lr = opt.lr
# define loss functions
self.criterionL1 = torch.nn.L1Loss()
self.criterionMSE = torch.nn.MSELoss()
# initialize optimizers
if self.opt.conv3d:
self.optimizer_G_3d = torch.optim.Adam(self.netG_3d.parameters(),
lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizer_G = torch.optim.Adam(self.netG.parameters(),
lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizer_E1 = torch.optim.Adam(self.netE1.parameters(),
lr=opt.lr, betas=(opt.beta1, 0.999))
if opt.which_model_preNet != 'none':
self.optimizer_preA = torch.optim.Adam(self.preNet_A.parameters(),
lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizer_DE1 = torch.optim.Adam(self.netDE1.parameters(),
lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizer_D1 = torch.optim.Adam(self.netD1.parameters(),
lr=opt.lr, betas=(opt.beta1, 0.999))
print('---------- Networks initialized -------------')
if self.opt.conv3d:
networks.print_network(self.netG_3d)
networks.print_network(self.netG)
networks.print_network(self.netE1)
networks.print_network(self.netDE1)
if opt.which_model_preNet != 'none':
networks.print_network(self.preNet_A)
networks.print_network(self.netD1)
print('-----------------------------------------------')
self.initial = True
def set_input(self, input):
input_A0 = input['A']
input_B0 = input['B']
self.input_A0.resize_(input_A0.size()).copy_(input_A0)
self.input_B0.resize_(input_B0.size()).copy_(input_B0)
self.image_paths = input['B_paths']
if self.opt.base_font:
input_base = input['A_base']
self.input_base.resize_(input_base.size()).copy_(input_base)
b,c,m,n = self.input_base.size()
real_base = self.Tensor(self.opt.output_nc,self.opt.input_nc_1, m,n)
for batch in range(self.opt.output_nc):
if not self.opt.rgb_in and self.opt.rgb_out:
real_base[batch,0,:,:] = self.input_base[0,batch,:,:]
real_base[batch,1,:,:] = self.input_base[0,batch,:,:]
real_base[batch,2,:,:] = self.input_base[0,batch,:,:]
self.real_base = Variable(real_base, requires_grad=False)
if self.opt.isTrain:
self.id_ = {}
self.obs = []
for i,im in enumerate(self.image_paths):
self.id_[int(im.split('/')[-1].split('.png')[0].split('_')[-1])]=i
self.obs += [int(im.split('/')[-1].split('.png')[0].split('_')[-1])]
for i in list(set(range(self.opt.output_nc))-set(self.obs)):
self.id_[i] = np.random.randint(low=0, high=len(self.image_paths))
self.num_disc = self.opt.output_nc +1
def all2observed(self, tensor_all):
b,c,m,n = self.real_A0.size()
self.out_id = self.obs
tensor_gt = self.Tensor(b,self.opt.input_nc_1, m,n)
for batch in range(b):
if not self.opt.rgb_in and self.opt.rgb_out:
tensor_gt[batch,0,:,:] = tensor_all.data[batch,self.out_id[batch],:,:]
tensor_gt[batch,1,:,:] = tensor_all.data[batch,self.out_id[batch],:,:]
tensor_gt[batch,2,:,:] = tensor_all.data[batch,self.out_id[batch],:,:]
else:
#TODO
tensor_gt[batch,:,:,:] = tensor_all.data[batch,self.out_id[batch]*np.array(self.opt.input_nc_1):(self.out_id[batch]+1)*np.array(self.opt.input_nc_1),:,:]
return tensor_gt
def forward0(self):
self.real_A0 = Variable(self.input_A0)
if self.opt.conv3d:
self.real_A0_indep = self.netG_3d.forward(self.real_A0.unsqueeze(2))
self.fake_B0 = self.netG.forward(self.real_A0_indep.squeeze(2))
else:
self.fake_B0 = self.netG.forward(self.real_A0)
if self.initial:
if self.opt.orna:
self.fake_B0_init = self.real_A0
else:
self.fake_B0_init = self.fake_B0
def forward1(self, inp_grad=False):
b,c,m,n = self.real_A0.size()
self.batch_ = b
self.out_id = self.obs
real_A1 = self.Tensor(self.opt.output_nc,self.opt.input_nc_1, m,n)
if self.opt.orna:
inp_orna = self.fake_B0_init
else:
inp_orna = self.fake_B0
for batch in range(self.opt.output_nc):
if not self.opt.rgb_in and self.opt.rgb_out:
real_A1[batch,0,:,:] = inp_orna.data[self.id_[batch],batch,:,:]
real_A1[batch,1,:,:] = inp_orna.data[self.id_[batch],batch,:,:]
real_A1[batch,2,:,:] = inp_orna.data[self.id_[batch],batch,:,:]
else:
#TODO
real_A1[batch,:,:,:] = inp_orna.data[batch,self.out_id[batch]*np.array(self.opt.input_nc_1):(self.out_id[batch]+1)*np.array(self.opt.input_nc_1),:,:]
if self.initial:
self.real_A1_init = Variable(real_A1, requires_grad=False)
self.initial = False
self.real_A1_s = Variable(real_A1, requires_grad=inp_grad)
self.real_A1 = self.real_A1_s
self.fake_B1_emb = self.netE1.forward(self.real_A1)
self.fake_B1 = self.netDE1.forward(self.fake_B1_emb)
self.real_B1 = Variable(self.input_B0)
self.real_A1_gt_s = Variable(self.all2observed(inp_orna), requires_grad=True)
self.real_A1_gt = (self.real_A1_gt_s)
self.fake_B1_gt_emb = self.netE1.forward(self.real_A1_gt)
self.fake_B1_gt = self.netDE1.forward(self.fake_B1_gt_emb)
obs_ = torch.cuda.LongTensor(self.obs) if self.opt.gpu_ids else LongTensor(self.obs)
if self.opt.base_font:
real_base_gt = index_select(self.real_base, 0, obs_)
self.real_base_gt = (Variable(real_base_gt.data, requires_grad=False))
def add_noise_disc(self,real):
#add noise to the discriminator target labels
#real: True/False?
if self.opt.noisy_disc:
rand_lbl = random.random()
if rand_lbl<0.6:
label = (not real)
else:
label = (real)
else:
label = (real)
return label
# no backprop gradients
def test(self):
self.real_A0 = Variable(self.input_A0, volatile=True)
if self.opt.conv3d:
self.real_A0_indep = self.netG_3d.forward(self.real_A0.unsqueeze(2))
self.fake_B0 = self.netG.forward(self.real_A0_indep.squeeze(2))
else:
self.fake_B0 = self.netG.forward(self.real_A0)
b,c,m,n = self.fake_B0.size()
#for test time: we need to generate output for all of the glyphs in each input image
if self.opt.rgb_in:
self.batch_ = c/self.opt.input_nc_1
else:
self.batch_ = c
self.out_id = range(self.batch_)
real_A1 = self.Tensor(self.batch_,self.opt.input_nc_1, m,n)
if self.opt.orna:
inp_orna = self.real_A0
else:
inp_orna = self.fake_B0
for batch in range(self.batch_):
if not self.opt.rgb_in and self.opt.rgb_out:
real_A1[batch,0,:,:] = inp_orna.data[:,self.out_id[batch],:,:]
real_A1[batch,1,:,:] = inp_orna.data[:,self.out_id[batch],:,:]
real_A1[batch,2,:,:] = inp_orna.data[:,self.out_id[batch],:,:]
else:
real_A1[batch,:,:,:] = inp_orna.data[:,self.out_id[batch]*np.array(self.opt.input_nc_1):(self.out_id[batch]+1)*np.array(self.opt.input_nc_1),:,:]
self.real_A1 = Variable(real_A1, volatile=True)
fake_B1_emb = self.netE1.forward(self.real_A1.detach())
self.fake_B1 = self.netDE1.forward(fake_B1_emb)
self.real_B1 = Variable(self.input_B0, volatile=True)
#get image paths
def get_image_paths(self):
return self.image_paths
def prepare_data(self):
if self.opt.conditional:
if self.opt.base_font:
self.first_pair = self.real_base
self.first_pair_gt = self.real_base_gt
else:
self.first_pair = Variable(self.real_A1.data, requires_grad=False)
self.first_pair_gt = Variable(self.real_A1_gt.data,requires_grad=False)
def backward_D1(self):
b,c,m,n = self.fake_B1.size()
# Fake
# stop backprop to the generator by detaching fake_B
label_fake = self.add_noise_disc(False)
if self.opt.conditional:
fake_AB1 = self.fake_AB1_pool.query(torch.cat((self.first_pair, self.fake_B1),1))
self.pred_fake1 = self.netD1.forward(fake_AB1.detach())
if self.opt.which_model_preNet != 'none':
#transform the input
transformed_AB1 = self.preNet_A.forward(fake_AB1.detach())
self.pred_fake_GL = self.netD1.forward(transformed_AB1)
self.loss_D1_fake = 0
self.loss_D1_fake += self.criterionGAN(self.pred_fake1, label_fake)
if self.opt.which_model_preNet != 'none':
self.loss_D1_fake += self.criterionGAN(self.pred_fake_GL, label_fake)
# Real
label_real = self.add_noise_disc(True)
if self.opt.conditional:
real_AB1 = torch.cat((self.first_pair_gt, self.real_B1), 1).detach()
self.pred_real1 = self.netD1.forward(real_AB1)
if self.opt.which_model_preNet != 'none':
transformed_real_AB1 = self.preNet_A.forward(real_AB1)
self.pred_real1_GL = self.netD1.forward(transformed_real_AB1)
self.loss_D1_real = 0
self.loss_D1_real += self.criterionGAN(self.pred_real1, label_real)
if self.opt.which_model_preNet != 'none':
self.loss_D1_real += self.criterionGAN(self.pred_real1_GL, label_real)
# Combined loss
self.loss_D1 = (self.loss_D1_fake + self.loss_D1_real) * 0.5
self.loss_D1.backward()
def backward_G(self, pass_grad, iter):
b,c,m,n = self.fake_B0.size()
if not self.opt.lambda_C or (iter>700):
self.loss_G_L1 = Variable(torch.zeros(1))
else:
weight_val = 10.0
weights = torch.ones(b,c,m,n).cuda() if self.opt.gpu_ids else torch.ones(b,c,m,n)
obs_ = torch.cuda.LongTensor(self.obs) if self.opt.gpu_ids else LongTensor(self.obs)
weights.index_fill_(1,obs_,weight_val)
weights=Variable(weights, requires_grad=False)
self.loss_G_L1 = self.criterionL1(weights * self.fake_B0, weights * self.fake_B0_init.detach()) * self.opt.lambda_C
self.loss_G_L1.backward(retain_graph=True)
self.fake_B0.backward(pass_grad)
def backward_G1(self,iter):
# First, G(A) should fake the discriminator
if self.opt.conditional:
fake_AB = torch.cat((self.first_pair.detach(), self.fake_B1), 1)
pred_fake = self.netD1.forward(fake_AB)
if self.opt.which_model_preNet != 'none':
#transform the input
transformed_AB1 = self.preNet_A.forward(fake_AB)
pred_fake_GL = self.netD1.forward(transformed_AB1)
self.loss_G1_GAN = 0
self.loss_G1_GAN += self.criterionGAN(pred_fake, True)
if self.opt.which_model_preNet != 'none':
self.loss_G1_GAN += self.criterionGAN(pred_fake_GL, True)
self.loss_G1_L1 = self.criterionL1(self.fake_B1_gt, self.real_B1) * self.opt.lambda_A
fake_B1_gray = 1-torch.nn.functional.sigmoid(100*(torch.mean(self.fake_B1,dim=1,keepdim=True)-0.9))
real_A1_gray = 1-torch.nn.functional.sigmoid(100*(torch.mean(self.real_A1,dim=1,keepdim=True)-0.9))
self.loss_G1_MSE_rgb2gay = self.criterionMSE(fake_B1_gray, real_A1_gray.detach())* self.opt.lambda_A/3.0
real_A1_gt_gray = 1-torch.nn.functional.sigmoid(100*(torch.mean(self.real_A1_gt,dim=1,keepdim=True)-0.9))
real_B1_gray = 1-torch.nn.functional.sigmoid(100*(torch.mean(self.real_B1,dim=1,keepdim=True)-0.9))
self.loss_G1_MSE_gt = self.criterionMSE(real_A1_gt_gray, real_B1_gray)* self.opt.lambda_A
# update generator less frequently
if iter<200:
rate_gen = 90
else:
rate_gen = 60
if (iter%rate_gen)==0:
self.loss_G1 = self.loss_G1_GAN + self.loss_G1_L1 + self.loss_G1_MSE_gt
G1_L1_update = True
G1_GAN_update = True
else:
self.loss_G1 = self.loss_G1_L1 + self.loss_G1_MSE_gt
G1_L1_update = True
G1_GAN_update = False
if (iter<200):
self.loss_G1 += self.loss_G1_MSE_rgb2gay
else:
self.loss_G1 += 0.01*self.loss_G1_MSE_rgb2gay
self.loss_G1.backward(retain_graph=True)
(b,c,m,n) = self.real_A1_s.size()
self.real_A1_grad = torch.zeros(b,c,m,n).cuda() if self.opt.gpu_ids else torch.zeros(b,c,m,n)
if G1_L1_update:
for batch in self.obs:
self.real_A1_grad[batch,:,:,:] = self.real_A1_gt_s.grad.data[self.id_[batch],:,:,:]
def optimize_parameters(self,iter):
self.forward0()
self.forward1(inp_grad=True)
self.prepare_data()
if self.opt.which_model_preNet != 'none':
self.optimizer_preA.zero_grad()
self.optimizer_D1.zero_grad()
self.backward_D1()
self.optimizer_D1.step()
if self.opt.which_model_preNet != 'none':
self.optimizer_preA.step()
self.optimizer_E1.zero_grad()
self.optimizer_DE1.zero_grad()
self.backward_G1(iter)
self.optimizer_DE1.step()
self.optimizer_E1.step()
self.loss_G_L1 = Variable(torch.zeros(1))
def optimize_parameters_Stacked(self,iter):
self.forward0()
self.forward1(inp_grad=True)
self.prepare_data()
if self.opt.which_model_preNet != 'none':
self.optimizer_preA.zero_grad()
self.optimizer_D1.zero_grad()
self.backward_D1()
self.optimizer_D1.step()
if self.opt.which_model_preNet != 'none':
self.optimizer_preA.step()
self.optimizer_E1.zero_grad()
self.optimizer_DE1.zero_grad()
self.backward_G1(iter)
self.optimizer_DE1.step()
self.optimizer_E1.step()
b,c,m,n = self.fake_B0.size()
self.optimizer_G.zero_grad()
if self.opt.conv3d:
self.optimizer_G_3d.zero_grad()
b,c,m,n = self.fake_B0.size()
fake_B0_grad = torch.zeros(b,c,m,n).cuda() if self.opt.gpu_ids else torch.zeros(b,c,m,n)
real_A_grad = self.real_A1_grad
for batch in range(self.opt.input_nc):
if not self.opt.rgb_in and self.opt.rgb_out:
fake_B0_grad[self.id_[batch], batch,:,:] += torch.mean(real_A_grad[batch,:,:,:],0)*3
else:
#TODO
fake_B0_grad[batch, self.obs[batch]*np.array(self.opt.input_nc_1):(self.obs[batch]+1)*np.array(self.opt.input_nc_1),:,:] = real_A_grad[batch,:,:,:]
self.backward_G(fake_B0_grad, iter)
self.optimizer_G.step()
if self.opt.conv3d:
self.optimizer_G_3d.step()
def get_current_errors(self):
return OrderedDict([('G1_GAN', self.loss_G1_GAN.data[0]),
('G1_L1', self.loss_G1_L1.data[0]),
('G1_MSE_gt', self.loss_G1_MSE_gt.data[0]),
('G1_MSE', self.loss_G1_MSE_rgb2gay.data[0]),
('D1_real', self.loss_D1_real.data[0]),
('D1_fake', self.loss_D1_fake.data[0]),
('G_L1', self.loss_G_L1.data[0])
])
def get_current_visuals(self):
real_A1 = self.real_A1.data.clone()
g,c,m,n = real_A1.size()
fake_B = self.fake_B1.data.clone()
real_B = self.real_B1.data.clone()
if self.opt.isTrain:
real_A_all = real_A1
fake_B_all = fake_B
else:
real_A_all = self.Tensor(real_B.size(0),real_B.size(1),real_A1.size(2),real_A1.size(2)*real_A1.size(0))
fake_B_all = self.Tensor(real_B.size(0),real_B.size(1),real_A1.size(2),fake_B.size(2)*fake_B.size(0))
for b in range(g):
real_A_all[:,:,:,self.out_id[b]*m:m*(self.out_id[b]+1)] = real_A1[b,:,:,:]
fake_B_all[:,:,:,self.out_id[b]*m:m*(self.out_id[b]+1)] = fake_B[b,:,:,:]
real_A = util.tensor2im(real_A_all)
fake_B = util.tensor2im(fake_B_all)
real_B = util.tensor2im(self.real_B1.data)
return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('real_B', real_B)])
def save(self, label):
if not self.opt.no_Style2Glyph:
try:
G_label = str(int(label)+int(self.opt.which_epoch))
except:
G_label = label
if self.opt.conv3d:
self.save_network(self.netG_3d, 'G_3d', G_label, self.gpu_ids)
self.save_network(self.netG, 'G', G_label, self.gpu_ids)
self.save_network(self.netE1, 'E1', label, self.gpu_ids)
self.save_network(self.netDE1, 'DE1', label, self.gpu_ids)
self.save_network(self.netD1, 'D1', label, self.gpu_ids)
if self.opt.which_model_preNet != 'none':
self.save_network(self.preNet_A, 'PRE_A', label, gpu_ids=self.gpu_ids)
def update_learning_rate(self):
lrd = self.opt.lr / self.opt.niter_decay
lr = self.old_lr - lrd
if self.opt.which_model_preNet != 'none':
for param_group in self.optimizer_preA.param_groups:
param_group['lr'] = lr
for param_group in self.optimizer_D1.param_groups:
param_group['lr'] = lr
for param_group in self.optimizer_G.param_groups:
param_group['lr'] = lr
for param_group in self.optimizer_E1.param_groups:
param_group['lr'] = lr
for param_group in self.optimizer_DE1.param_groups:
param_group['lr'] = lr
print('update learning rate: %f -> %f' % (self.old_lr, lr))
self.old_lr = lr