@@ -114,7 +114,7 @@ This decorator also **validates**, **serializes**, and **flushes** all your metr
114
114
115
115
@metrics.log_metrics
116
116
def lambda_handler(evt, ctx):
117
- metrics.add_metric(name="BookingConfirmation", unit=" Count" , value=1)
117
+ metrics.add_metric(name="BookingConfirmation", unit=MetricUnit. Count, value=1)
118
118
...
119
119
```
120
120
=== "Example CloudWatch Logs excerpt"
@@ -148,7 +148,6 @@ This decorator also **validates**, **serializes**, and **flushes** all your metr
148
148
!!! tip "Metric validation"
149
149
If metrics are provided, and any of the following criteria are not met, ** ` SchemaValidationError ` ** exception will be raised:
150
150
151
- * Minimum of 1 dimension
152
151
* Maximum of 9 dimensions
153
152
* Namespace is set, and no more than one
154
153
* Metric units must be [supported by CloudWatch](https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_MetricDatum.html)
@@ -162,6 +161,8 @@ If you want to ensure that at least one metric is emitted, you can pass `raise_o
162
161
```python hl_lines="3"
163
162
from aws_lambda_powertools.metrics import Metrics
164
163
164
+ metrics = Metrics()
165
+
165
166
@metrics.log_metrics(raise_on_empty_metrics=True)
166
167
def lambda_handler(evt, ctx):
167
168
...
@@ -183,12 +184,12 @@ When using multiple middlewares, use `log_metrics` as your **last decorator** wr
183
184
tracer = Tracer(service="booking")
184
185
metrics = Metrics(namespace="ExampleApplication", service="booking")
185
186
186
- metrics.add_metric(name="ColdStart", unit=" Count" , value=1)
187
+ metrics.add_metric(name="ColdStart", unit=MetricUnit. Count, value=1)
187
188
188
189
@metrics.log_metrics
189
190
@tracer.capture_lambda_handler
190
191
def lambda_handler(evt, ctx):
191
- metrics.add_metric(name="BookingConfirmation", unit=" Count" , value=1)
192
+ metrics.add_metric(name="BookingConfirmation", unit=MetricUnit. Count, value=1)
192
193
...
193
194
```
194
195
@@ -200,7 +201,6 @@ You can optionally capture cold start metrics with `log_metrics` decorator via `
200
201
201
202
```python hl_lines="6"
202
203
from aws_lambda_powertools import Metrics
203
- from aws_lambda_powertools.metrics import MetricUnit
204
204
205
205
metrics = Metrics(service="ExampleService")
206
206
@@ -300,7 +300,7 @@ If you prefer not to use `log_metrics` because you might want to encapsulate add
300
300
from aws_lambda_powertools.metrics import MetricUnit
301
301
302
302
metrics = Metrics(namespace="ExampleApplication", service="booking")
303
- metrics.add_metric(name="ColdStart", unit=" Count" , value=1)
303
+ metrics.add_metric(name="ColdStart", unit=MetricUnit. Count, value=1)
304
304
305
305
your_metrics_object = metrics.serialize_metric_set()
306
306
metrics.clear_metrics()
0 commit comments