forked from cudamat/cudamat
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcudamat_kernels.cu
833 lines (646 loc) · 27.3 KB
/
cudamat_kernels.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
#include "cudamat_kernels.cuh"
#include "float.h"
/* ------------------------- Random number generation ------------------------- */
__global__ void kSeedRandom(unsigned int* rndMults, unsigned long long* rndWords, unsigned int seed) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
// The initial x is the seed and the initial carry is 1
unsigned long long rndWord = ((unsigned long long)seed << 32) + 1;
const unsigned int rndMult = rndMults[idx];
/*
* Run the chain for a few steps so that all the streams have a chance
* to differentiate. They start out generating similar random numbers
* because all the multipliers are similar.
*/
for(unsigned int i = 0; i < NUM_RND_BURNIN; i++) {
rndWord = rndMult * LOW_BITS(rndWord) + HIGH_BITS(rndWord);
}
rndWords[idx] = rndWord;
}
__global__ void kRandomUniform(unsigned int* rndMults, unsigned long long* rndWords, float* gData, unsigned int numElements) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
unsigned long long rndWord = rndWords[idx];
const unsigned int rndMult = rndMults[idx];
for(unsigned int i = idx; i < numElements; i += NUM_RND_STREAMS) {
rndWord = rndMult * LOW_BITS(rndWord) + HIGH_BITS(rndWord);
gData[i] = (__uint2float_rn(LOW_BITS(rndWord)) + 1.0f) / 4294967296.0f;
}
rndWords[idx] = rndWord;
}
__global__ void kRandomGaussian(unsigned int* rndMults, unsigned long long* rndWords, float* gData, unsigned int numElements) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
unsigned long long rndWord = rndWords[idx];
const unsigned int rndMult = rndMults[idx];
float rnd1, rnd2, R, T;
for(unsigned int i = idx; i < numElements; i += 2*NUM_RND_STREAMS) {
rndWord = rndMult * LOW_BITS(rndWord) + HIGH_BITS(rndWord);
rnd1 = (__uint2float_rn(LOW_BITS(rndWord)) + 1.0f) / 4294967296.0f;
rndWord = rndMult * LOW_BITS(rndWord) + HIGH_BITS(rndWord);
rnd2 = (__uint2float_rn(LOW_BITS(rndWord)) + 1.0f) / 4294967296.0f;
T = 2 * PI * rnd2;
R = sqrtf(-2 * __logf(rnd1));
gData[i] = R * __cosf(T);
if (i + NUM_RND_STREAMS < numElements)
gData[i + NUM_RND_STREAMS] = R * __sinf(T);
}
rndWords[idx] = rndWord;
}
/* ------------------------- Data copying ------------------------- */
/*
Copy row slice from source to target. There is a block for every 32x32 chunk being copied.
*/
__global__ void kGetRowSlice(float* source, float* target, int start, int end, int width, int height) {
const int row = start + blockIdx.x * 32 + threadIdx.x;
const int start_col = blockIdx.y * 32;
const int end_col = (start_col + 32 < width) ? start_col + 32: width;
const int target_height = end - start;
if (row < end) {
for (int cur_col = start_col; cur_col < end_col; cur_col++)
target[cur_col * target_height + row - start] = source[cur_col * height + row];
}
}
__global__ void kSetRowSlice(float* source, float* target, int start, int end, int width, int height) {
const int row = start + blockIdx.x * 32 + threadIdx.x;
const int start_col = blockIdx.y * 32;
const int end_col = (start_col + 32 < width) ? start_col + 32: width;
const int source_height = end - start;
if (row < end) {
for (int cur_col = start_col; cur_col < end_col; cur_col++)
target[cur_col * height + row] = source[cur_col * source_height + row - start];
//source[cur_col * height + row - start] = target[cur_col * target_height + row];
}
}
__global__ void kTranspose(float *odata, float *idata, int width, int height) {
__shared__ float block[COPY_BLOCK_SIZE][COPY_BLOCK_SIZE+1];
// read the matrix tile into shared memory
unsigned int xIndex = blockIdx.x * COPY_BLOCK_SIZE + threadIdx.x;
unsigned int yIndex = blockIdx.y * COPY_BLOCK_SIZE + threadIdx.y;
if((xIndex < width) && (yIndex < height)) {
unsigned int index_in = yIndex * width + xIndex;
block[threadIdx.y][threadIdx.x] = idata[index_in];
}
__syncthreads();
// write the transposed matrix tile to global memory
xIndex = blockIdx.y * COPY_BLOCK_SIZE + threadIdx.x;
yIndex = blockIdx.x * COPY_BLOCK_SIZE + threadIdx.y;
if((xIndex < height) && (yIndex < width)) {
unsigned int index_out = yIndex * height + xIndex;
odata[index_out] = block[threadIdx.x][threadIdx.y];
}
}
/* ------------------------- Mathematical operations ------------------------- */
__global__ void kLessThan(float* mat1, float* mat2, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = mat1[i] < mat2[i];
}
}
__global__ void kLessThanScalar(float* mat, float val, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = mat[i] < val;
}
}
__global__ void kGreaterThan(float* mat1, float* mat2, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = mat1[i] > mat2[i];
}
}
__global__ void kGreaterThanScalar(float* mat, float val, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = mat[i] > val;
}
}
__global__ void kEquals(float* mat1, float* mat2, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = mat1[i] == mat2[i];
}
}
__global__ void kEqualsScalar(float* mat, float val, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = mat[i] == val;
}
}
__global__ void kMinimum(float* mat1, float* mat2, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = fminf(mat1[i], mat2[i]);
}
}
__global__ void kMinimumScalar(float* mat, float val, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = fminf(mat[i], val);
}
}
__global__ void kMaximum(float* mat1, float* mat2, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = fmaxf(mat1[i], mat2[i]);
}
}
__global__ void kMaximumScalar(float* mat, float val, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = fmaxf(mat[i], val);
}
}
__global__ void kMinmaxScalar(float* mat, float val1, float val2, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = fminf(fmaxf(mat[i], val1), val2);
}
}
__global__ void kMinColumnwise(float* mat, float* target, unsigned int width, unsigned int height) {
__shared__ float min_vals[32];
float cur_min = FLT_MAX;
float val = 0;
for (unsigned int i = threadIdx.x; i < height; i += 32) {
val = mat[blockIdx.x * height + i];
if (val < cur_min)
cur_min = val;
}
min_vals[threadIdx.x] = cur_min;
__syncthreads();
if (threadIdx.x == 0) {
cur_min = FLT_MAX;
for (unsigned int i = 0; i < 32; i++)
if (min_vals[i] < cur_min)
cur_min = min_vals[i];
target[blockIdx.x] = cur_min;
}
}
__global__ void kMinRowwise(float* mat, float* target, unsigned int width, unsigned int height) {
__shared__ float min_vals[32];
float cur_min = FLT_MAX;
float val = 0;
for (unsigned int i = threadIdx.x; i < width; i += 32) {
val = mat[i * height + blockIdx.x];
if (val < cur_min)
cur_min = val;
}
min_vals[threadIdx.x] = cur_min;
__syncthreads();
if (threadIdx.x == 0) {
cur_min = FLT_MAX;
for (unsigned int i = 0; i < 32; i++)
if (min_vals[i] < cur_min)
cur_min = min_vals[i];
target[blockIdx.x] = cur_min;
}
}
__global__ void kMaxColumnwise(float* mat, float* target, unsigned int width, unsigned int height) {
__shared__ float max_vals[32];
float cur_max = -FLT_MAX;
float val = 0;
for (unsigned int i = threadIdx.x; i < height; i += 32) {
val = mat[blockIdx.x * height + i];
if (val > cur_max)
cur_max = val;
}
max_vals[threadIdx.x] = cur_max;
__syncthreads();
if (threadIdx.x == 0) {
cur_max = -FLT_MAX;
for (unsigned int i = 0; i < 32; i++)
if (max_vals[i] > cur_max)
cur_max = max_vals[i];
target[blockIdx.x] = cur_max;
}
}
__global__ void kMaxRowwise(float* mat, float* target, unsigned int width, unsigned int height) {
__shared__ float max_vals[32];
float cur_max = -FLT_MAX;
float val = 0;
for (unsigned int i = threadIdx.x; i < width; i += 32) {
val = mat[i * height + blockIdx.x];
if (val > cur_max)
cur_max = val;
}
max_vals[threadIdx.x] = cur_max;
__syncthreads();
if (threadIdx.x == 0) {
cur_max = -FLT_MAX;
for (unsigned int i = 0; i < 32; i++)
if (max_vals[i] > cur_max)
cur_max = max_vals[i];
target[blockIdx.x] = cur_max;
}
}
__global__ void kArgMinColumnwise(float* mat, float* target, unsigned int width, unsigned int height) {
__shared__ float min_vals[32];
__shared__ unsigned int min_args[32];
float cur_min = FLT_MAX;
unsigned int cur_arg = 0;
float val = 0;
for (unsigned int i = threadIdx.x; i < height; i += 32) {
val = mat[blockIdx.x * height + i];
if (val < cur_min) {
cur_min = val;
cur_arg = i;
}
}
min_vals[threadIdx.x] = cur_min;
min_args[threadIdx.x] = cur_arg;
__syncthreads();
if (threadIdx.x == 0) {
cur_min = FLT_MAX;
cur_arg = 0;
for (unsigned int i = 0; i < 32; i++)
if (min_vals[i] < cur_min) {
cur_min = min_vals[i];
cur_arg = min_args[i];
}
target[blockIdx.x] = cur_arg;
}
}
__global__ void kArgMinRowwise(float* mat, float* target, unsigned int width, unsigned int height) {
__shared__ float min_vals[32];
__shared__ unsigned int min_args[32];
float cur_min = FLT_MAX;
unsigned int cur_arg = 0;
float val = 0;
for (unsigned int i = threadIdx.x; i < width; i += 32) {
val = mat[i * height + blockIdx.x];
if (val < cur_min) {
cur_min = val;
cur_arg = i;
}
}
min_vals[threadIdx.x] = cur_min;
min_args[threadIdx.x] = cur_arg;
__syncthreads();
if (threadIdx.x == 0) {
cur_min = FLT_MAX;
cur_arg = 0;
for (unsigned int i = 0; i < 32; i++)
if (min_vals[i] < cur_min) {
cur_min = min_vals[i];
cur_arg = min_args[i];
}
target[blockIdx.x] = cur_arg;
}
}
__global__ void kArgMaxColumnwise(float* mat, float* target, unsigned int width, unsigned int height) {
__shared__ float max_vals[32];
__shared__ unsigned int max_args[32];
float cur_max = -FLT_MAX;
unsigned int cur_arg = 0;
float val = 0;
for (unsigned int i = threadIdx.x; i < height; i += 32) {
val = mat[blockIdx.x * height + i];
if (val > cur_max) {
cur_max = val;
cur_arg = i;
}
}
max_vals[threadIdx.x] = cur_max;
max_args[threadIdx.x] = cur_arg;
__syncthreads();
if (threadIdx.x == 0) {
cur_max = -FLT_MAX;
cur_arg = 0;
for (unsigned int i = 0; i < 32; i++)
if (max_vals[i] > cur_max) {
cur_max = max_vals[i];
cur_arg = max_args[i];
}
target[blockIdx.x] = cur_arg;
}
}
__global__ void kArgMaxRowwise(float* mat, float* target, unsigned int width, unsigned int height) {
__shared__ float max_vals[32];
__shared__ unsigned int max_args[32];
float cur_max = -FLT_MAX;
unsigned int cur_arg = 0;
float val = 0;
for (unsigned int i = threadIdx.x; i < width; i += 32) {
val = mat[i * height + blockIdx.x];
if (val > cur_max) {
cur_max = val;
cur_arg = i;
}
}
max_vals[threadIdx.x] = cur_max;
max_args[threadIdx.x] = cur_arg;
__syncthreads();
if (threadIdx.x == 0) {
cur_max = -FLT_MAX;
cur_arg = 0;
for (unsigned int i = 0; i < 32; i++)
if (max_vals[i] > cur_max) {
cur_max = max_vals[i];
cur_arg = max_args[i];
}
target[blockIdx.x] = cur_arg;
}
}
__global__ void kWithin(float* mat, float min, float max, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
if (mat[i] > min && mat[i] < max) {
target[i] = 1.;
} else {
target[i] = 0.;
}
}
}
__global__ void kSign(float* mat, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = mat[i] ? copysignf(1., mat[i]) : 0.;
}
}
__global__ void kApplySigmoid(float* mat, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = 1 / (1 + __expf(-mat[i]));
}
}
__global__ void kApplyTanh(float* mat, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
float mat_i, exp2x;
for (unsigned int i = idx; i < len; i += numThreads) {
mat_i = mat[i];
exp2x = __expf(2 * mat_i);
target[i] = 1 - 2 / (exp2x + 1);
}
}
__global__ void kApplySoftThreshold(float* mat, float alpha, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
float f = mat[i];
target[i] = f > 0 ? max(0., f - alpha) : min(0., f + alpha);
}
}
__global__ void kApplyAbs(float* mat, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = mat[i] * ((mat[i] > 0) - (mat[i] < 0));
}
}
__global__ void kApplyLog1PlusExp(float* mat, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
float mat_i;
for (unsigned int i = idx; i < len; i += numThreads) {
mat_i = mat[i];
if (mat_i > 0)
target[i] = (__logf(1 + __expf(-mat_i)) + mat_i);
else
target[i] = __logf(1 + __expf(mat_i));
}
}
__global__ void kLog(float* mat, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = __logf(mat[i]);
}
}
__global__ void kExp(float* mat, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = __expf(mat[i]);
}
}
__global__ void kGamma(float* mat, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = tgammaf(mat[i]);
}
}
__global__ void kLogGamma(float* mat, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = lgammaf(mat[i]);
}
}
__global__ void kSqrt(float* mat, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = sqrt(mat[i]);
}
}
__global__ void kPow(float* mat, float pow, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = powf(mat[i], pow);
}
}
__global__ void kPowMatrix(float* mat, float* pow, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = powf(mat[i], pow[i]);
}
}
__global__ void kAddPow(float* mat1, float* mat2, float pow, float alpha, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = alpha * mat1[i] + powf(mat2[i], pow);
}
}
__global__ void kMultPow(float* mat1, float* mat2, float pow, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = mat1[i] * powf(mat2[i], pow);
}
}
__global__ void kReciprocal(float* mat, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads)
target[i] = 1.f / mat[i];
}
__global__ void kAddColVector(float* mat, float* vec, float* tgtMat, unsigned int width,
unsigned int height) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < width * height; i += numThreads) {
tgtMat[i] = mat[i] + vec[i % height];
}
}
__global__ void kAddRowVector(float* mat, float* vec, float* tgtMat, unsigned int width, unsigned int height) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < width * height; i += numThreads) {
tgtMat[i] = mat[i] + vec[i / height];
}
}
__global__ void kAddColMult(float* mat, float* vec, float* tgtMat, float mult,
unsigned int width, unsigned int height) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < width * height; i += numThreads) {
tgtMat[i] = mat[i] + mult * vec[i % height];
}
}
__global__ void kAddRowMult(float* mat, float* vec, float* tgtMat, float mult,
unsigned int width, unsigned int height) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < width * height; i += numThreads) {
tgtMat[i] = mat[i] + mult * vec[i / height];
}
}
__global__ void kMultByColVector(float* mat, float* vec, float* tgtMat, unsigned int width, unsigned int height) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < width * height; i += numThreads) {
tgtMat[i] = mat[i] * vec[i % height];
}
}
__global__ void kMultByRowVector(float* mat, float* vec, float* tgtMat, unsigned int width, unsigned int height) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < width * height; i += numThreads) {
tgtMat[i] = mat[i] * vec[i / height];
}
}
__global__ void kDivByColVector(float* mat, float* vec, float* tgtMat, unsigned int width, unsigned int height) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < width * height; i += numThreads) {
tgtMat[i] = mat[i] / vec[i % height];
}
}
__global__ void kDivByRowVector(float* mat, float* vec, float* tgtMat, unsigned int width, unsigned int height) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < width * height; i += numThreads) {
tgtMat[i] = mat[i] / vec[i / height];
}
}
__global__ void kAdd(float* a, float* b, float* dest, unsigned int numEls) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < numEls; i += numThreads) {
dest[i] = a[i] + b[i];
}
}
__global__ void kSubtract(float* a, float* b, float* dest, unsigned int numEls) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < numEls; i += numThreads) {
dest[i] = a[i] - b[i];
}
}
__global__ void kDivide(float* a, float* b, float* dest, unsigned int numEls) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < numEls; i += numThreads) {
dest[i] = a[i] / b[i];
}
}
__global__ void kMult(float* a, float* b, float* dest, unsigned int numEls) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < numEls; i += numThreads) {
dest[i] = a[i] * b[i];
}
}
__global__ void kMultScalar(float* mat, float alpha, float* dest, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
dest[i] = alpha * mat[i];
}
}
__global__ void kAssignScalar(float* dest, float alpha, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
dest[i] = alpha;
}
}
__global__ void kDivideScalar(float* mat, float alpha, float* dest, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
dest[i] = mat[i] / alpha;
}
}
__global__ void kAddScalar(float* a, float alpha, float* dest, unsigned int numEls) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < numEls; i += numThreads) {
dest[i] = a[i] + alpha;
}
}
__global__ void kSelectRows(float* source, float* target, float* indices, int nRowIs, int nCols, int nSourceRows){
__shared__ int sourceRowIndices[32];
const int startTargetRowI = blockIdx.x * 32;
const int tid = threadIdx.x;
const int localNRowIs = min(32, nRowIs-startTargetRowI);
// cooperatively load 32 row indices
if (tid < localNRowIs){
sourceRowIndices[tid] = int(indices[startTargetRowI + tid]);
if (sourceRowIndices[tid]<0)
sourceRowIndices[tid] += nSourceRows;
if (sourceRowIndices[tid]<0 || sourceRowIndices[tid]>=nSourceRows)
sourceRowIndices[tid] = -1;
}
__syncthreads();
// copy 32 rows
for (int i=0; i<localNRowIs; i++){
const int targetRowI = startTargetRowI + i, sourceRowI = sourceRowIndices[i];
for (int colI=tid; colI<nCols; colI+=32)
target[targetRowI * nCols + colI] = sourceRowI==-1 ? (1.0/0.0 -1.0/0.0) : source[sourceRowI * nCols + colI];
}
}
__global__ void kSetSelectedRows(float* target, float* source, float* indices, int nRowIs, int nCols, int nTargetRows){
__shared__ int targetRowIndices[32];
const int startSourceRowI = blockIdx.x * 32;
const int tid = threadIdx.x;
const int localNRowIs = min(32, nRowIs-startSourceRowI);
// cooperatively load 32 row indices
if (tid < localNRowIs){
targetRowIndices[tid] = int(indices[startSourceRowI + tid]);
if (targetRowIndices[tid]<0)
targetRowIndices[tid] += nTargetRows;
if (targetRowIndices[tid]<0 || targetRowIndices[tid]>=nTargetRows)
targetRowIndices[tid] = -1;
}
__syncthreads();
// copy 32 rows
for (int i=0; i<localNRowIs; i++){
const int sourceRowI = startSourceRowI + i, targetRowI = targetRowIndices[i];
for (int colI=tid; colI<nCols; colI+=32)
target[targetRowI * nCols + colI] = targetRowI==-1 ? (1.0/0.0 -1.0/0.0) : source[sourceRowI * nCols + colI];
}
}
__global__ void kWhere(float* condition_mat, float* if_mat, float* else_mat, float* target, unsigned int len) {
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int numThreads = blockDim.x * gridDim.x;
for (unsigned int i = idx; i < len; i += numThreads) {
target[i] = condition_mat[i] ? if_mat[i] : else_mat[i];
}
}