-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathft245r.c
1248 lines (1024 loc) · 34.6 KB
/
ft245r.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2003-2004 Theodore A. Roth <troth@openavr.org>
* some code:
* Copyright (C) 2011-2012 Roger E. Wolff <R.E.Wolff@BitWizard.nl>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
/* ft245r -- FT245R/FT232R Synchronous BitBangMode Programmer
default pin assign
FT232R / FT245R
sdi = 1; # RxD / D1
sck = 0; # RTS / D0
sdo = 2; # TxD / D2
reset = 4; # DTR / D4
*/
/*
The ft232r is very similar, or even "identical" in the synchronous
bitbang mode that we use here.
This allows boards that have an ft232r for communication and an avr
as the processor to function as their own "ICSP". Boards that fit
this description include the Arduino Duemilanove, Arduino Diecimila,
Arduino NG (http://arduino.cc/it/main/boards) and the BitWizard
ftdi_atmega board (http://www.bitwizard.nl/wiki/index.php/FTDI_ATmega)
The Arduinos have to be patched to bring some of the control lines
to the ICSP header. The BitWizard board already has the neccessary
wiring on the PCB.
How to add the wires to an arduino is documented here:
http://www.geocities.jp/arduino_diecimila/bootloader/index_en.html
*/
#include "ac_cfg.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/time.h>
#include <unistd.h>
#include <stdint.h>
#include <math.h>
#include "avrdude.h"
#include "libavrdude.h"
#include "bitbang.h"
#include "ft245r.h"
#include "usbdevs.h"
#include "tpi.h"
#define TPIPCR_GT_0b 0x07
#define TPI_STOP_BITS 0x03
#if defined(HAVE_LIBFTDI1) && defined(HAVE_LIBUSB_1_0)
# if defined(HAVE_LIBUSB_1_0_LIBUSB_H)
# include <libusb-1.0/libusb.h>
# else
# include <libusb.h>
# endif
# include <libftdi1/ftdi.h>
#elif defined(HAVE_LIBFTDI)
#include <ftdi.h>
#else
#ifdef _MSC_VER
#pragma message("No libftdi or libusb support. Install libftdi1/libusb-1.0 or libftdi/libusb and run configure/make again.")
#else
#warning No libftdi or libusb support. Install libftdi1/libusb-1.0 or libftdi/libusb and run configure/make again.
#endif
#define DO_NOT_BUILD_FT245R
#endif
#if defined(DO_NOT_BUILD_FT245R)
static int ft245r_noftdi_open(PROGRAMMER *pgm, const char *name) {
pmsg_error("no libftdi or libusb support; install libftdi1/libusb-1.0 or libftdi/libusb and run configure/make\n");
return -1;
}
void ft245r_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "ftdi_syncbb");
pgm->open = ft245r_noftdi_open;
}
#else
#define FT245R_CYCLES 2
#define FT245R_CMD_SIZE (4 * 8*FT245R_CYCLES)
#define FT245R_FRAGMENT_SIZE (8 * FT245R_CMD_SIZE)
#define REQ_OUTSTANDINGS 10
#define FT245R_DEBUG 0
/*
Some revisions of the FTDI chips mess up the timing in bitbang mode
unless the bitclock is set to the max (3MHz). For example, see:
http://www.ftdichip.com/Support/Documents/TechnicalNotes/TN_120_FT232R%20Errata%20Technical%20Note.pdf
To work around this problem, set the macro below to 1 to always set
the bitclock to 3MHz and then issue the same byte repeatedly to get
the desired timing.
*/
#define FT245R_BITBANG_VARIABLE_PULSE_WIDTH_WORKAROUND 0
static struct ftdi_context *handle;
#if FT245R_BITBANG_VARIABLE_PULSE_WIDTH_WORKAROUND
static unsigned int baud_multiplier;
#else
# define baud_multiplier 1 // this let's C compiler optimize
#endif
static unsigned char ft245r_ddr;
static unsigned char ft245r_out;
#define FT245R_BUFSIZE 0x2000 // receive buffer size
#define FT245R_MIN_FIFO_SIZE 128 // min of FTDI RX/TX FIFO size
static struct {
int len; // # of bytes in transmit buffer
uint8_t buf[FT245R_MIN_FIFO_SIZE]; // transmit buffer
} tx;
static struct {
int discard; // # of bytes to discard during read
int pending; // # of bytes that have been written since last read
int len; // # of bytes in receive buffer
int wr; // write pointer
int rd; // read pointer
uint8_t buf[FT245R_BUFSIZE]; // receive ring buffer
} rx;
static int ft245r_cmd(const PROGRAMMER *pgm, const unsigned char *cmd,
unsigned char *res);
static int ft245r_tpi_tx(const PROGRAMMER *pgm, uint8_t byte);
static int ft245r_tpi_rx(const PROGRAMMER *pgm, uint8_t *bytep);
// Discard all data from the receive buffer.
static void ft245r_rx_buf_purge(const PROGRAMMER *pgm) {
rx.len = 0;
rx.rd = rx.wr = 0;
}
static void ft245r_rx_buf_put(const PROGRAMMER *pgm, uint8_t byte) {
rx.len++;
rx.buf[rx.wr++] = byte;
if (rx.wr >= (int) sizeof(rx.buf))
rx.wr = 0;
}
static uint8_t ft245r_rx_buf_get(const PROGRAMMER *pgm) {
rx.len--;
uint8_t byte = rx.buf[rx.rd++];
if (rx.rd >= (int) sizeof(rx.buf))
rx.rd = 0;
return byte;
}
/* Fill receive buffer with data from the FTDI receive FIFO. */
static int ft245r_fill(const PROGRAMMER *pgm) {
uint8_t raw[FT245R_MIN_FIFO_SIZE];
int i, nread;
nread = ftdi_read_data(handle, raw, rx.pending);
if (nread < 0)
return -1;
rx.pending -= nread;
#if FT245R_DEBUG
msg_info("%s: read %d bytes (pending=%d)\n", __func__, nread, rx.pending);
#endif
for (i = 0; i < nread; ++i)
ft245r_rx_buf_put(pgm, raw[i]);
return nread;
}
static int ft245r_rx_buf_fill_and_get(const PROGRAMMER *pgm) {
while (rx.len == 0)
{
int result = ft245r_fill(pgm);
if (result < 0)
{
return result;
}
}
return ft245r_rx_buf_get(pgm);
}
/* Flush pending TX data to the FTDI send FIFO. */
static int ft245r_flush(const PROGRAMMER *pgm) {
int rv, len = tx.len, avail;
uint8_t *src = tx.buf;
if (!len)
return 0;
while (len > 0) {
avail = FT245R_MIN_FIFO_SIZE - rx.pending;
if (avail <= 0) {
avail = ft245r_fill(pgm);
if (avail < 0) {
pmsg_error("fill returned %d: %s\n", avail, ftdi_get_error_string(handle));
return -1;
}
}
if (avail > len)
avail = len;
#if FT245R_DEBUG
msg_info("%s: writing %d bytes\n", __func__, avail);
#endif
rv = ftdi_write_data(handle, src, avail);
if (rv != avail) {
msg_error("write returned %d (expected %d): %s\n", rv, avail, ftdi_get_error_string(handle));
return -1;
}
src += avail;
len -= avail;
rx.pending += avail;
}
tx.len = 0;
return 0;
}
static int ft245r_send2(const PROGRAMMER *pgm, unsigned char *buf, size_t len,
bool discard_rx_data) {
for (size_t i = 0; i < len; ++i) {
for (int j = 0; j < baud_multiplier; ++j) {
if (discard_rx_data)
++rx.discard;
tx.buf[tx.len++] = buf[i];
if (tx.len >= FT245R_MIN_FIFO_SIZE)
ft245r_flush(pgm);
}
}
return 0;
}
static int ft245r_send(const PROGRAMMER *pgm, unsigned char *buf, size_t len) {
return ft245r_send2(pgm, buf, len, false);
}
static int ft245r_send_and_discard(const PROGRAMMER *pgm, unsigned char *buf,
size_t len) {
return ft245r_send2(pgm, buf, len, true);
}
static int ft245r_recv(const PROGRAMMER *pgm, unsigned char *buf, size_t len) {
ft245r_flush(pgm);
ft245r_fill(pgm);
#if FT245R_DEBUG
msg_info("%s: discarding %d, consuming %lu bytes\n", __func__, rx.discard, (unsigned long) len);
#endif
while (rx.discard > 0) {
int result = ft245r_rx_buf_fill_and_get(pgm);
if (result < 0)
{
return result;
}
--rx.discard;
}
for (size_t i = 0; i < len; ++i)
{
int result = ft245r_rx_buf_fill_and_get(pgm);
if (result < 0)
{
return result;
}
buf[i] = (uint8_t)result;
for (int j = 1; j < baud_multiplier; ++j)
{
result = ft245r_rx_buf_fill_and_get(pgm);
if (result < 0)
{
return result;
}
}
}
return 0;
}
static int ft245r_drain(const PROGRAMMER *pgm, int display) {
int r;
// flush the buffer in the chip by changing the mode ...
r = ftdi_set_bitmode(handle, 0, BITMODE_RESET); // reset
if (r) return -1;
r = ftdi_set_bitmode(handle, ft245r_ddr, BITMODE_SYNCBB); // set Synchronuse BitBang
if (r) return -1;
// drain our buffer.
ft245r_rx_buf_purge(pgm);
return 0;
}
/* Ensure any pending writes are sent to the FTDI chip before sleeping. */
static void ft245r_usleep(const PROGRAMMER *pgm, useconds_t usec) {
ft245r_flush(pgm);
usleep(usec);
}
static int ft245r_chip_erase(const PROGRAMMER *pgm, const AVRPART *p) {
unsigned char cmd[4] = {0,0,0,0};
unsigned char res[4];
if (p->prog_modes & PM_TPI)
return avr_tpi_chip_erase(pgm, p);
if (p->op[AVR_OP_CHIP_ERASE] == NULL) {
msg_error("chip erase instruction not defined for part %s\n", p->desc);
return -1;
}
avr_set_bits(p->op[AVR_OP_CHIP_ERASE], cmd);
pgm->cmd(pgm, cmd, res);
ft245r_usleep(pgm, p->chip_erase_delay);
return pgm->initialize(pgm, p);
}
static int ft245r_set_bitclock(const PROGRAMMER *pgm) {
// libftdi1 multiplies bitbang baudrate by 4:
int r, rate = 0, ftdi_rate = 3000000 / 4;
/* bitclock is second. 1us = 0.000001. Max rate for ft232r 750000 */
if(pgm->bitclock) {
rate = (uint32_t)(1.0/pgm->bitclock);
} else if (pgm->baudrate) {
rate = pgm->baudrate;
} else {
rate = 150000; /* should work for all ftdi chips and the avr default internal clock of 1MHz */
}
#if FT245R_BITBANG_VARIABLE_PULSE_WIDTH_WORKAROUND
if (rate > 0 && rate < ftdi_rate)
baud_multiplier = round((ftdi_rate + rate - 1) / rate);
else
baud_multiplier = 1;
#else
ftdi_rate = rate;
#endif
msg_notice2("%s: bitclk %d -> FTDI rate %d, baud multiplier %d\n",
__func__, rate, ftdi_rate, baud_multiplier);
r = ftdi_set_baudrate(handle, ftdi_rate);
if (r) {
msg_error("set baudrate %d failed with error '%s'\n", rate, ftdi_get_error_string (handle));
return -1;
}
return 0;
}
static int get_pin(const PROGRAMMER *pgm, int pinname) {
uint8_t byte;
ft245r_flush(pgm);
if (ftdi_read_pins(handle, &byte) != 0)
return -1;
if (FT245R_DEBUG)
msg_info("%s: in 0x%02x\n", __func__, byte);
return GET_BITS_0(byte, pgm, pinname) != 0;
}
static int set_pin(const PROGRAMMER *pgm, int pinname, int val) {
unsigned char buf[1];
if (pgm->pin[pinname].mask[0] == 0) {
// ignore not defined pins (might be the led or vcc or buff if not needed)
return 0;
}
ft245r_out = SET_BITS_0(ft245r_out,pgm,pinname,val);
buf[0] = ft245r_out;
ft245r_send_and_discard(pgm, buf, 1);
return 0;
}
static int set_sck(const PROGRAMMER *pgm, int value) {
return set_pin(pgm, PIN_AVR_SCK, value);
}
static int set_reset(const PROGRAMMER *pgm, int value) {
return set_pin(pgm, PIN_AVR_RESET, value);
}
static int set_buff(const PROGRAMMER *pgm, int value) {
return set_pin(pgm, PPI_AVR_BUFF, value);
}
static int set_vcc(const PROGRAMMER *pgm, int value) {
return set_pin(pgm, PPI_AVR_VCC, value);
}
/* these functions are callbacks, which go into the
* PROGRAMMER data structure ("optional functions")
*/
static int set_led_pgm(const PROGRAMMER *pgm, int value) {
return set_pin(pgm, PIN_LED_PGM, value);
}
static int set_led_rdy(const PROGRAMMER *pgm, int value) {
return set_pin(pgm, PIN_LED_RDY, value);
}
static int set_led_err(const PROGRAMMER *pgm, int value) {
return set_pin(pgm, PIN_LED_ERR, value);
}
static int set_led_vfy(const PROGRAMMER *pgm, int value) {
return set_pin(pgm, PIN_LED_VFY, value);
}
/*
* apply power to the AVR processor
*/
static void ft245r_powerup(const PROGRAMMER *pgm) {
set_vcc(pgm, ON); /* power up */
ft245r_usleep(pgm, 100);
}
/*
* remove power from the AVR processor
*/
static void ft245r_powerdown(const PROGRAMMER *pgm) {
set_vcc(pgm, OFF); /* power down */
}
static void ft245r_disable(const PROGRAMMER *pgm) {
set_buff(pgm, OFF);
}
static void ft245r_enable(PROGRAMMER *pgm, const AVRPART *p) {
/*
* Prepare to start talking to the connected device - pull reset low
* first, delay a few milliseconds, then enable the buffer. This
* sequence allows the AVR to be reset before the buffer is enabled
* to avoid a short period of time where the AVR may be driving the
* programming lines at the same time the programmer tries to. Of
* course, if a buffer is being used, then the /RESET line from the
* programmer needs to be directly connected to the AVR /RESET line
* and not via the buffer chip.
*/
set_reset(pgm, OFF);
ft245r_usleep(pgm, 1);
set_buff(pgm, ON);
}
/*
* issue the 'program enable' command to the AVR device
*/
static int ft245r_program_enable(const PROGRAMMER *pgm, const AVRPART *p) {
unsigned char cmd[4] = {0,0,0,0};
unsigned char res[4];
int i;
if (p->prog_modes & PM_TPI)
return avr_tpi_program_enable(pgm, p, TPIPCR_GT_0b);
if (p->op[AVR_OP_PGM_ENABLE] == NULL) {
pmsg_error("AVR_OP_PGM_ENABLE command not defined for %s\n", p->desc);
fflush(stderr);
return -1;
}
avr_set_bits(p->op[AVR_OP_PGM_ENABLE], cmd);
for(i = 0; i < 4; i++) {
ft245r_cmd(pgm, cmd, res);
if (res[p->pollindex-1] == p->pollvalue) return 0;
if (FT245R_DEBUG) {
pmsg_notice("program enable command not successful, retrying\n");
fflush(stderr);
}
set_pin(pgm, PIN_AVR_RESET, ON);
ft245r_usleep(pgm, 20);
set_pin(pgm, PIN_AVR_RESET, OFF);
if (i == 3) {
ft245r_drain(pgm, 0);
ft245r_rx_buf_purge(pgm);
}
}
pmsg_error("device is not responding to program enable; check connection\n");
fflush(stderr);
return -1;
}
/*
* initialize the AVR device and prepare it to accept commands
*/
static int ft245r_initialize(const PROGRAMMER *pgm, const AVRPART *p) {
/* Apply power between VCC and GND while RESET and SCK are set to “0”. In some systems,
* the programmer can not guarantee that SCK is held low during power-up. In this
* case, RESET must be given a positive pulse of at least two CPU clock cycles duration
* after SCK has been set to “0”.
*/
set_sck(pgm, OFF);
ft245r_powerup(pgm);
set_reset(pgm, OFF);
ft245r_usleep(pgm, 5000); // 5ms
set_reset(pgm, ON);
ft245r_usleep(pgm, 5000); // 5ms
set_reset(pgm, OFF);
/* Wait for at least 20 ms and enable serial programming by sending the Programming
* Enable serial instruction to pin SDO.
*/
ft245r_usleep(pgm, 20000); // 20ms
if (p->prog_modes & PM_TPI) {
bool io_link_ok = true;
uint8_t byte;
int i;
/* Since there is a single TPIDATA line, SDO and SDI must be
linked together through a 1kOhm resistor. Verify that
everything we send on SDO gets mirrored back on SDI. */
set_pin(pgm, PIN_AVR_SDO, 0);
if (get_pin(pgm, PIN_AVR_SDI) != 0) {
io_link_ok = false;
if(ovsigck) {
pmsg_warning("SDO->SDI 0 failed\n");
} else {
pmsg_error("SDO->SDI 0 failed\n");
return -1;
}
}
set_pin(pgm, PIN_AVR_SDO, 1);
if (get_pin(pgm, PIN_AVR_SDI) != 1) {
io_link_ok = false;
if(ovsigck) {
pmsg_warning("SDO->SDI 1 failed\n");
} else {
pmsg_error("SDO->SDI 1 failed\n");
return -1;
}
}
if (io_link_ok)
msg_notice2("SDO-SDI link present\n");
/* keep TPIDATA high for 16 clock cycles */
set_pin(pgm, PIN_AVR_SDO, 1);
for (i = 0; i < 16; i++) {
set_sck(pgm, 1);
set_sck(pgm, 0);
}
/* remove extra guard timing bits */
ft245r_tpi_tx(pgm, TPI_CMD_SSTCS | TPI_REG_TPIPCR);
ft245r_tpi_tx(pgm, 0x7);
/* read TPI ident reg */
ft245r_tpi_tx(pgm, TPI_CMD_SLDCS | TPI_REG_TPIIR);
ft245r_tpi_rx(pgm, &byte);
if (byte != 0x80) {
msg_error("TPIIR 0x%02x not correct\n", byte);
return -1;
}
}
return ft245r_program_enable(pgm, p);
}
static inline void add_bit(const PROGRAMMER *pgm, unsigned char *buf, int *buf_pos,
uint8_t bit) {
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SDO, bit);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SCK,0);
buf[*buf_pos] = ft245r_out;
(*buf_pos)++;
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SCK,1);
buf[*buf_pos] = ft245r_out;
(*buf_pos)++;
}
static inline int set_data(const PROGRAMMER *pgm, unsigned char *buf, unsigned char data) {
int j;
int buf_pos = 0;
unsigned char bit = 0x80;
for (j=0; j<8; j++) {
add_bit(pgm, buf, &buf_pos, (data & bit) != 0);
bit >>= 1;
}
return buf_pos;
}
static inline unsigned char extract_data(const PROGRAMMER *pgm, unsigned char *buf, int offset) {
int j;
int buf_pos = FT245R_CYCLES; /* SDI data is valid AFTER rising SCK edge,
i.e. in next clock cycle */
unsigned char bit = 0x80;
unsigned char r = 0;
buf += offset * (8 * FT245R_CYCLES);
for (j=0; j<8; j++) {
if (GET_BITS_0(buf[buf_pos],pgm,PIN_AVR_SDI)) {
r |= bit;
}
buf_pos += FT245R_CYCLES;
bit >>= 1;
}
return r;
}
/* to check data */
#if 0
static inline unsigned char extract_data_out(const PROGRAMMER *pgm, unsigned char *buf, int offset) {
int j;
int buf_pos = 1;
unsigned char bit = 0x80;
unsigned char r = 0;
buf += offset * (8 * FT245R_CYCLES);
for (j=0; j<8; j++) {
if (GET_BITS_0(buf[buf_pos],pgm,PIN_AVR_SDO)) {
r |= bit;
}
buf_pos += FT245R_CYCLES;
bit >>= 1;
}
return r;
}
#endif
/*
* transmit an AVR device command and return the results; 'cmd' and
* 'res' must point to at least a 4 byte data buffer
*/
static int ft245r_cmd(const PROGRAMMER *pgm, const unsigned char *cmd,
unsigned char *res) {
int i,buf_pos;
unsigned char buf[128];
buf_pos = 0;
for (i=0; i<4; i++) {
buf_pos += set_data(pgm, buf+buf_pos, cmd[i]);
}
buf[buf_pos] = 0;
buf_pos++;
ft245r_send (pgm, buf, buf_pos);
ft245r_recv (pgm, buf, buf_pos);
res[0] = extract_data(pgm, buf, 0);
res[1] = extract_data(pgm, buf, 1);
res[2] = extract_data(pgm, buf, 2);
res[3] = extract_data(pgm, buf, 3);
return 0;
}
static inline uint8_t extract_tpi_data(const PROGRAMMER *pgm, unsigned char *buf,
int *buf_pos) {
uint8_t bit = 0x1, byte = 0;
int j;
for (j = 0; j < 8; j++) {
(*buf_pos)++; // skip over falling clock edge
if (GET_BITS_0(buf[(*buf_pos)++], pgm, PIN_AVR_SDI))
byte |= bit;
bit <<= 1;
}
return byte;
}
static inline int set_tpi_data(const PROGRAMMER *pgm, unsigned char *buf,
uint8_t byte) {
uint8_t bit = 0x1, parity = 0;
int j, buf_pos = 0;
// start bit:
add_bit(pgm, buf, &buf_pos, 0);
// 8 data bits:
for (j = 0; j < 8; j++) {
add_bit(pgm, buf, &buf_pos, (byte & bit) != 0);
parity ^= (byte & bit) != 0;
bit <<= 1;
}
// parity bit:
add_bit(pgm, buf, &buf_pos, parity);
// stop bits:
add_bit(pgm, buf, &buf_pos, 1);
add_bit(pgm, buf, &buf_pos, 1);
return buf_pos;
}
static int ft245r_tpi_tx(const PROGRAMMER *pgm, uint8_t byte) {
uint8_t buf[128];
int len;
len = set_tpi_data(pgm, buf, byte);
ft245r_send_and_discard(pgm, buf, len);
return 0;
}
static int ft245r_tpi_rx(const PROGRAMMER *pgm, uint8_t *bytep) {
uint8_t buf[128], bit, parity;
int i, buf_pos = 0, len = 0;
uint32_t res, m, byte;
/* Allow for up to 4 bits before we must see start bit; during
that time, we must keep the SDO line high. */
for (i = 0; i < 2; ++i)
len += set_data(pgm, &buf[len], 0xff);
ft245r_send(pgm, buf, len);
ft245r_recv(pgm, buf, len);
res = (extract_tpi_data(pgm, buf, &buf_pos)
| ((uint32_t) extract_tpi_data(pgm, buf, &buf_pos) << 8));
/* Look for start bit: */
m = 0x1;
while (m & res)
m <<= 1;
if (m >= 0x10) {
pmsg_error("start bit missing (res=0x%04x)\n", res);
return -1;
}
byte = parity = 0;
for (i = 0; i < 8; ++i) {
m <<= 1;
bit = (res & m) != 0;
parity ^= bit;
byte |= bit << i;
}
m <<= 1;
if (((res & m) != 0) != parity) {
pmsg_error("parity bit wrong\n");
return -1;
}
if (((res & (m << 1)) == 0) || ((res & (m << 2))) == 0) {
pmsg_error("stop bits wrong\n");
return -1;
}
*bytep = (uint8_t) byte;
return 0;
}
static int ft245r_cmd_tpi(const PROGRAMMER *pgm, const unsigned char *cmd,
int cmd_len, unsigned char *res, int res_len) {
int i, ret = 0;
pgm->pgm_led(pgm, ON);
for (i = 0; i < cmd_len; ++i)
ft245r_tpi_tx(pgm, cmd[i]);
for (i = 0; i < res_len; ++i)
if ((ret = ft245r_tpi_rx(pgm, &res[i])) < 0)
break;
if (verbose >= 2) {
msg_notice2("%s: [ ", __func__);
for (i = 0; i < cmd_len; i++)
msg_notice2("%02X ", cmd[i]);
msg_notice2("] [ ");
for(i = 0; i < res_len; i++)
msg_notice2("%02X ", res[i]);
msg_notice2("]\n");
}
pgm->pgm_led(pgm, OFF);
return ret;
}
/* lower 8 pins are accepted, they might be also inverted */
static const struct pindef_t valid_pins = {{0xff},{0xff}} ;
static const struct pin_checklist_t pin_checklist[] = {
{ PIN_AVR_SCK, 1, &valid_pins},
{ PIN_AVR_SDO, 1, &valid_pins},
{ PIN_AVR_SDI, 1, &valid_pins},
{ PIN_AVR_RESET,1, &valid_pins},
{ PPI_AVR_BUFF, 0, &valid_pins},
};
static int ft245r_open(PROGRAMMER *pgm, const char *port) {
int rv;
int devnum = -1;
char device[9] = "";
rv = pins_check(pgm,pin_checklist,sizeof(pin_checklist)/sizeof(pin_checklist[0]), true);
if(rv) {
pgm->display(pgm, progbuf);
return rv;
}
strcpy(pgm->port, port);
// read device string cut after 8 chars (max. length of serial number)
if ((sscanf(port, "usb:%8s", device) != 1)) {
pmsg_notice("ft245r_open(): no device identifier in portname, using default\n");
pgm->usbsn = cache_string("");
devnum = 0;
} else {
if (strlen(device) == 8 ){ // serial number
pmsg_notice2("ft245r_open(): serial number parsed as: %s\n", device);
// copy serial number to pgm struct
pgm->usbsn = cache_string(device);
// and use first device with matching serial (should be unique)
devnum = 0;
}
else if (strncmp("ft", device, 2) || strlen(device) <= 8) { // classic device number
char *startptr = device + 2;
char *endptr = NULL;
devnum = strtol(startptr,&endptr,10);
if ((startptr==endptr) || (*endptr != '\0')) {
devnum = -1;
}
pmsg_notice2("ft245r_open(): device number parsed as: %d\n", devnum);
}
}
// if something went wrong before abort with helpful message
if (devnum < 0) {
pmsg_error("invalid portname '%s': use^ 'ft[0-9]+' or serial number\n", port);
return -1;
}
handle = malloc (sizeof (struct ftdi_context));
ftdi_init(handle);
LNODEID usbpid = lfirst(pgm->usbpid);
int pid;
if (usbpid) {
pid = *(int *)(ldata(usbpid));
if (lnext(usbpid))
pmsg_warning("using PID 0x%04x, ignoring remaining PIDs in list\n", pid);
} else {
pid = USB_DEVICE_FT245;
}
rv = ftdi_usb_open_desc_index(handle,
pgm->usbvid?pgm->usbvid:USB_VENDOR_FTDI,
pid,
pgm->usbproduct[0]?pgm->usbproduct:NULL,
pgm->usbsn[0]?pgm->usbsn:NULL,
devnum);
if (rv) {
pmsg_error("cannot open ftdi device: %s\n", ftdi_get_error_string(handle));
goto cleanup_no_usb;
}
ft245r_ddr =
pgm->pin[PIN_AVR_SCK].mask[0]
| pgm->pin[PIN_AVR_SDO].mask[0]
| pgm->pin[PIN_AVR_RESET].mask[0]
| pgm->pin[PPI_AVR_BUFF].mask[0]
| pgm->pin[PPI_AVR_VCC].mask[0]
| pgm->pin[PIN_LED_ERR].mask[0]
| pgm->pin[PIN_LED_RDY].mask[0]
| pgm->pin[PIN_LED_PGM].mask[0]
| pgm->pin[PIN_LED_VFY].mask[0];
/* set initial values for outputs, no reset everything else is off */
ft245r_out = 0;
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_RESET,1);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SCK,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SDO,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PPI_AVR_BUFF,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PPI_AVR_VCC,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_LED_ERR,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_LED_RDY,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_LED_PGM,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_LED_VFY,0);
rv = ftdi_set_latency_timer(handle, 1);
if (rv) {
pmsg_error("unable to set latency timer to 1 (%s)\n", ftdi_get_error_string(handle));
goto cleanup;
}
rv = ftdi_set_bitmode(handle, ft245r_ddr, BITMODE_SYNCBB); // set Synchronous BitBang
if (rv) {
pmsg_error("synchronous BitBangMode is not supported (%s)\n", ftdi_get_error_string(handle));
goto cleanup;
}
rv = ft245r_set_bitclock(pgm);
if (rv) {
goto cleanup;
}
/*
* drain any extraneous input
*/
ft245r_drain (pgm, 0);
ft245r_send_and_discard(pgm, &ft245r_out, 1);
return 0;
cleanup:
ftdi_usb_close(handle);
cleanup_no_usb:
ftdi_deinit (handle);
free(handle);
handle = NULL;
return -1;
}
static void ft245r_close(PROGRAMMER * pgm) {
if (handle) {
// I think the switch to BB mode and back flushes the buffer.
ftdi_set_bitmode(handle, 0, BITMODE_SYNCBB); // set Synchronous BitBang, all in puts
ftdi_set_bitmode(handle, 0, BITMODE_RESET); // disable Synchronous BitBang
ftdi_usb_close(handle);
ftdi_deinit (handle);
free(handle);
handle = NULL;
}
}
static void ft245r_display(const PROGRAMMER *pgm, const char *p) {
msg_info("%sPin assignment : 0..7 = DBUS0..7\n", p); // , 8..11 = GPIO0..3\n",p);
pgm_display_generic_mask(pgm, p, SHOW_ALL_PINS);
}
static int ft245r_paged_write_gen(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size, unsigned int addr, unsigned int n_bytes) {
for(int i=0; i < (int) n_bytes; i++, addr++)
if(avr_write_byte_default(pgm, p, m, addr, m->buf[addr]) != 0)
return -2;
return n_bytes;
}
static struct ft245r_request {
int addr;
int bytes;
int n;
struct ft245r_request *next;
} *req_head,*req_tail,*req_pool;
static void put_request(int addr, int bytes, int n) {
struct ft245r_request *p;
if (req_pool) {
p = req_pool;
req_pool = p->next;
} else {
p = malloc(sizeof(struct ft245r_request));
if (!p) {
msg_error("cannot alloc memory\n");
exit(1);
}
}
memset(p, 0, sizeof(struct ft245r_request));
p->addr = addr;
p->bytes = bytes;
p->n = n;
if (req_tail) {
req_tail->next = p;
req_tail = p;