-
Notifications
You must be signed in to change notification settings - Fork 957
x86 FPU semantic model
Peter Matula edited this page Sep 9, 2019
·
5 revisions
This wiki page describes how x86 FPU (x87) instruction semantics is modeled in Capstone2llvmir library.
- FPU has 8 registers,
st(0)
tost(7)
. - Registers form a stack.
-
st(0)
denotes register at the top of the stack,st(i)
denotes register at distancei
from the top of the stack. - Numbers are pushed onto the stack from memory, and popped off the stack to memory.
- FPU instructions generally work on:
- Single register on top of the stack:
st(0)
. - Two registers on top of the stack:
st(0)
,st(1)
. - Two registers, one on top of the stack:
st(0)
, one on specified offseti
from the top of the stack:st(i)
.
- Single register on top of the stack:
- Example:
fld qword [a] ; st(0) = a
fld qword [b] ; st(0) = b, st(1) = a
fld qword [c] ; st(0) = c, st(1) = b, st(2) = a
fmul st(0), st(2) ; st(0) = c * a, st(1) = b, st(2) = a
fmulp st(1), st(0) ; st(0) = b * c * a, st(1) = a
- Registers:
- Data:
X86_REG_ST0
,X86_REG_ST1
,X86_REG_ST2
,X86_REG_ST3
,X86_REG_ST4
,X86_REG_ST5
,X86_REG_ST6
,X86_REG_ST7
- Data registers represent registers relative to the current top of the stack.
- FPU status register:
X86_REG_FPSW
- FPU tag registers: missing?
- FPU control register: missing?
- Data:
- Instructions:
- All x86 FPU instruction are represented.
-
X86_REG_STx
are operands (implicit/explicit) of these instructions. -
!!! Registers denote stack slots relative to the current FPU stack top !!! For example,
st(1)
in the following two fmul instructions is not the same stack slot, since stack was changed between the instructions:
; st(0) = a, st(1) = b
fmul st(0), st(1) ; st(0) = a * b, st(1) = b
fld qword [c] ; st(0) = c, st(1) = a * b, st(2) = b
fmul st(0), st(1) ; st(0) = c * a * b, st(1) = a * b, st(2) = b
Therefore, we cannot simply represent fmul st(0), st(1)
instruction as:
; global variables representing registers
@st0 = internal global x86_fp80
@st1 = internal global x86_fp80
; fmul st(0), st(1)
%op0 = load x86_fp80, x86_fp80* @st0
%op1 = load x86_fp80, x86_fp80* @st1
%res = fmul x86_fp80 %op0, %op1
store x86_fp80 %res, x86_fp80* @st0
-
Registers:
- Capstone2llvmir library adds x86 FPU registers on top of Capstone registers.
-
enum x87_reg_status
defines registers representing parts ofX86_REG_FPSW
status register:X87_REG_IE, X87_REG_DE, X87_REG_ZE, X87_REG_OE, X87_REG_UE, X87_REG_PE, X87_REG_SF, X87_REG_ES, X87_REG_C0, X87_REG_C1, X87_REG_C2, X87_REG_C3, X87_REG_TOP, X87_REG_B
. - The most important register here is
X87_REG_TOP
ofi3
type, which represents the current top of the stack - how deep in the stack are we currently. -
enum x87_reg_control
defines registers representing the FPU control register:X87_REG_IM, X87_REG_DM, X87_REG_ZM, X87_REG_OM, X87_REG_UM, X87_REG_PM, X87_REG_PC, X87_REG_RC, X87_REG_X
. -
enum x87_reg_tag
represent FPU tag registers associated withX86_REG_STx
registers:X87_REG_TAG0, X87_REG_TAG1, X87_REG_TAG2, X87_REG_TAG3, X87_REG_TAG4, X87_REG_TAG5, X87_REG_TAG6, X87_REG_TAG7
. - Capstone's
X86_REG_STx
registers are represented in LLVM IR asstx
global variables ofx86_fp80
type. They represent concrete FPU registers, not stack slots relative to the current stack top.
-
Instructions:
- Instructions do not work with concrete FPU registers
X86_REG_STx
(global variablesstx
), since at the translation time we do not know which register is actually used - we only know register offsets from the current stack top. - Instructions are modeled as operations on stack - they implement a sort of stack machine.
- It is up to a later analysis (in bin2llvmir) to analyze the FPU stack, assign concrete FPU registers to stack machine operations, and replace these operations with instances of concrete registers
stx
.
- Instructions do not work with concrete FPU registers
-
Stack machine:
- Global variable (register) representing the current stack TOP - its position in stack.
@fpu_stat_TOP = internal global i3 0
- Value points to the last pushed/occupied stack slot, not the first empty slot. This is because it is easier to work with it this way - e.g.
fmul st(0), st(1)
can load the value and use it to getst(0)
right away, then it needs to add one to getst(1)
. If it was pointing to the first empty slot, we would need an add operation to get to anyst(i)
, includingst(0)
. - Assumed initial value is 8 (even though this can not be represented in
i3
type, the subsequent FPU analysis can easily make this assumption). This represents an empty FPU stack - nothing was pushed. - Stack grows from 8 to zero.
- Push operation decrements TOP.
- e.g.
top = 6 -> push -> top = 5
- e.g.
- Pop operation increments TOP.
- e.g.
top = 5 -> pop -> top = 6
- e.g.
- There are 4 pseudo functions used to get/set arbitrary stack slots. When used together with stack TOP and addition/subtraction, we can get/set stack slots relative to the current TOP.
-
void _x87DataStoreFunction(i3, fp80)
: storesfp80
value to stack position (FPU data stack) indicated by ani3
value. -
void _x87TagStoreFunction(i3, i2)
: storesi2
value to stack position (FPU tag stack) indicated by ani3
value. -
fp80 _x87DataLoadFunction(i3)
: loadsfp80
value from stack position (FPU data stack) indicated by ani3
value. -
i2 _x87TagLoadFunction(i3)
: loadsi2
value from stack position (FPU tag stack) indicated by ani3
value.
-
- Global variable (register) representing the current stack TOP - its position in stack.
-
Example push (pseudo function names are arbitrary):
fld ds:dbl_4090C0
DD /0 FLD m64fp Push m64fp onto the FPU register stack.
%21 = load double, double* inttoptr (i32 4231360 to double*) ; load double from memory 4231360
%22 = fpext double %21 to x86_fp80 ; convert double value to fp80 value
%23 = load i3, i3* @fpu_stat_TOP ; get the current TOP
%24 = sub i3 %23, 1 ; decrement TOP -> get to the next empty slot
%25 = fcmp oeq x86_fp80 %22, 0xK00000000000000000000 ; compute tag based on value to push
%26 = select i1 %25, i2 1, i2 0 ; compute tag based on value to push
call void @__x87_reg_store.fpu_tag(i3 %24, i2 %26) ; set computed tag to the next empty tag slot
call void @__x87_reg_store.fpr(i3 %24, x86_fp80 %22) ; set loaded value to the next empty data slot
store i3 %24, i3* @fpu_stat_TOP ; decrement TOP -> it points to just pushed values
- Example pop (pseudo function names are arbitrary):
fstp qword ptr [esp+4]
DD /3 FSTP m64fp Copy ST(0) to m64fp and pop register stack.
%27 = load i3, i3* @fpu_stat_TOP ; get the current TOP
%28 = call x86_fp80 @__x87_reg_load.fpr(i3 %27) ; get value from the data slot at the current top
%29 = load i32, i32* @esp ; get stack pointer
%30 = add i32 %29, 4 ; add +4 to stack pointer
%31 = fptrunc x86_fp80 %28 to double ; convert fp80 value to double value
%32 = inttoptr i32 %30 to double* ; convert esp+4 value to double pointer
store double %31, double* %32 ; store FP vlaue to esp+4
call void @__x87_reg_store.fpu_tag(i3 %27, i2 -1) ; clear the current tag slot
%33 = add i3 %27, 1 ; increment TOP
store i3 %33, i3* @fpu_stat_TOP ; increment TOP -> it points to the next FPU stack slot -> the current one was skipped = poped
- Example fmul operation (pseudo function names are arbitrary):
fmulp st(1), st
DE C9 FMULP Multiply ST(1) by ST(0), store result in ST(1), and pop the register stack.
%60 = load i3, i3* @fpu_stat_TOP ; get the current TOP
%61 = add i3 %60, 1 ; increment TOP
%62 = call x86_fp80 @__x87_reg_load.fpr(i3 %61) ; get st(1) - value below the current top (top + 1)
%63 = call x86_fp80 @__x87_reg_load.fpr(i3 %60) ; get st(0) - value at the current top
%64 = fmul x86_fp80 %62, %63 ; st(1) * st(0)
%65 = fcmp oeq x86_fp80 %64, 0xK00000000000000000000 ; compute tag based on value to set
%66 = select i1 %65, i2 1, i2 0 ; compute tag based on value to set
call void @__x87_reg_store.fpu_tag(i3 %61, i2 %66) ; set computed tag to st(1) tag slot
call void @__x87_reg_store.fpr(i3 %61, x86_fp80 %64) ; set computed value to st(1)
call void @__x87_reg_store.fpu_tag(i3 %60, i2 -1) ; clear the current TOP tag slot
%67 = add i3 %60, 1 ; increment TOP
store i3 %67, i3* @fpu_stat_TOP ; increment TOP -> st(0) is poped, st(1) becomes st(0)
- Assumes initial value for
@fpu_stat_TOP
is 8. - Tracks the value throughout the program.
- Each time the value is used to get/set FPU data/tag register, the current
x
value between 0 and 7 is used to getX86_REG_STx
register (stx
LLVM IR global variable). - Pseudo functions used in stack machine are replaced by load/stores of these concrete registers (LLVM IR global variables).