-
Notifications
You must be signed in to change notification settings - Fork 113
/
run_stylemc.py
353 lines (269 loc) · 11.4 KB
/
run_stylemc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
"""
Approach: "StyleMC: Multi-Channel Based Fast Text-Guided Image Generation and Manipulation"
Reimplemented and modified by Axel Sauer for "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets"
"""
import os
import re
import click
import legacy
from typing import List, Optional
import PIL.Image
import imageio
from timeit import default_timer as timer
import dnnlib
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_utils import gen_utils
from metrics.metric_utils import get_feature_detector
from feature_networks import clip
#----------------------------------------------------------------------------
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def save_image(img, path):
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(path)
def unravel_index(index, shape):
out = []
for dim in reversed(shape):
out.append(index % dim)
index = index // dim
return tuple(reversed(out))
def num_range(s: str) -> List[int]:
'''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.'''
range_re = re.compile(r'^(\d+)-(\d+)$')
m = range_re.match(s)
if m:
return list(range(int(m.group(1)), int(m.group(2))+1))
vals = s.split(',')
return [int(x) for x in vals]
#----------------------------------------------------------------------------
def forward_synthesis(G, styles):
""" pass through synthesis using style space, adjust blocks on the fly if needed """
G.synthesis.input.affine = nn.Identity()
x = G.synthesis.input(styles[:, 0][:, :4])
for idx, name in enumerate(G.synthesis.layer_names):
block = getattr(G.synthesis, name)
s = styles[:, idx+1][:, :block.in_channels]
# adjust block
block.affine = nn.Identity()
block.w_dim = block.in_channels
x = block(x, s)
if G.synthesis.output_scale != 1:
x = x * G.synthesis.output_scale
x = x.to(torch.float32)
return x
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def prompts_dist_loss(x, targets, loss):
if len(targets) == 1: # Keeps consistent results vs previous method for single objective guidance
return loss(x, targets[0])
distances = [loss(x, target) for target in targets]
return torch.stack(distances, dim=-1).sum(dim=-1)
def embed_text(model, prompt, device='cuda'):
return model.encode_text(clip.tokenize(prompt).to(device)).float()
#----------------------------------------------------------------------------
def generate_edit(
G,
styles,
direction,
edit_strength,
path,
save_video=True,
device='cuda',
):
time_start = timer()
if save_video:
video_out = imageio.get_writer(path+'.mp4', mode='I', fps=60, codec='libx264')
for grad_change in np.arange(0, 1, 0.005)*edit_strength:
with torch.no_grad():
img = forward_synthesis(G, styles + direction*grad_change)
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255)
video_out.append_data(img[0].to(torch.uint8).cpu().numpy())
video_out.close()
else:
imgs = []
grad_changes = [x*edit_strength for x in [0, 0.25, 0.5, 0.75, 1]]
for i, grad_change in enumerate(grad_changes):
with torch.no_grad():
img = forward_synthesis(G, styles + direction * grad_change)
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255)
imgs.append(img[0].to(torch.uint8).cpu().numpy())
PIL.Image.fromarray(np.concatenate(imgs, axis=1), 'RGB').save(path + '.png')
print(f"Time for generating edits: {timer() - time_start:.2f} s")
def find_direction(
G,
styles,
text_prompt,
layers,
seeds,
class_idx=None,
batch_size=8,
device='cuda',
):
time_start = timer()
# prepare clip
detector_url = 'https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/feature_networks/clip_vitb_patch32.pkl'
clip_model = get_feature_detector(url=detector_url).to(device)
texts = [frase.strip() for frase in text_prompt.split("|") if frase]
targets = [embed_text(clip_model.model, text, device=device) for text in texts]
# sample styles
all_styles = []
for seed_idx, seed in enumerate(seeds):
ws = gen_utils.get_w_from_seed(G, 1, device, seed=seed, class_idx=class_idx)
ws = ws.to(torch.float32).unbind(dim=1)
all_styles.append(w_s_converter(G, ws, device))
all_styles = torch.cat(all_styles)
# stats tracker
cos_sim_track = AverageMeter('cos_sim', ':.4f')
norm_track = AverageMeter('norm', ':.4f')
progress = ProgressMeter(len(seeds), [cos_sim_track, norm_track])
# initalize styles direction
direction = torch.zeros(1, G.num_ws, 1024, device=device)
direction.requires_grad_()
direction_tracker = torch.zeros_like(direction)
grads = []
opt = torch.optim.AdamW([direction], lr=0.05, betas=(0., 0.999), weight_decay=0.25)
for seed_idx in range(len(seeds)):
# forward pass through synthesis network with new styles
styles = all_styles[seed_idx] + direction
img = forward_synthesis(G, styles)
# clip loss
img = (img * 127.5 + 128).clamp(0, 255)
embeds = clip_model(img)
cos_sim = prompts_dist_loss(embeds, targets, spherical_dist_loss)
cos_sim.backward(retain_graph=True)
# track stats
cos_sim_track.update(cos_sim.item())
norm_track.update(torch.norm(direction).item())
if not (seed_idx % batch_size):
# zeroing out gradients for non-optimized layers
layers_zeroed = torch.tensor([x for x in range(G.num_ws) if not x in layers])
direction.grad[:, layers_zeroed] = 0
opt.step()
grads.append(direction.grad.clone())
direction.grad.data.zero_()
# keep track of gradients over time
if seed_idx > 3:
direction_tracker[grads[-2] * grads[-1] < 0] += 1
# plot stats
progress.display(seed_idx)
# throw out fluctuating channels
direction = direction.detach()
direction[direction_tracker > (len(seeds)) / 4] = 0
print(f"Time for direction search: {timer() - time_start:.2f} s")
return direction
def w_s_converter(G, ws, device='cuda', unit_test=False):
styles = torch.zeros(1, G.num_ws, 1024, device=device)
# input layer
style = G.synthesis.input.affine(ws[0])
style_sz = style.shape[1]
styles[0, :1, :style_sz] = style
# synthesis layers
for i, name in enumerate(G.synthesis.layer_names):
block = getattr(G.synthesis, name)
w = ws[i+1]
style = block.affine(w)
style_sz = style.shape[1]
styles[0, i+1:i+2, :style_sz] = style
if unit_test:
os.makedirs('unit_tests', exist_ok=True)
with torch.no_grad():
img_w = G.synthesis(torch.cat(ws)[None])
img_s = forward_synthesis(G, styles)
save_image(img_w, 'unit_tests/img_w.png')
save_image(img_s, 'unit_tests/img_s.png')
return styles.detach()
@click.command()
@click.pass_context
@click.option('--network', 'network_pkl', help='Network pickle filename. Used for computing the direction and optionally producing the final output', required=True)
@click.option('--bigger-network', 'bigger_network_pkl', help='Network pickle filename of bigger network. Used for upsampling.')
@click.option('--seeds', type=num_range, help='List of random seeds', required=True)
@click.option('--layers', type=num_range, help='Restrict the style space to a range of layers. We recommend not to optimize the critically sampled layers (last 3).', required=True)
@click.option('--text-prompt', help='Text', type=str, required=True)
@click.option('--edit-strength', help='Strength of edit', type=float, required=True)
@click.option('--outdir', help='Where to save the output images', type=str, required=True)
@click.option('--class-idx', help='Class label (unconditional if not specified)', type=int)
@click.option('--w-path', help='Path to npz containing style code.', type=str)
@click.option('--init-seed', help='Seed of in inital image', type=int)
@click.option('--save-video', help='Save video of edit', is_flag=True)
def stylemc(
ctx: click.Context,
network_pkl: str,
seeds: List[int],
layers: List[int],
text_prompt: str,
edit_strength: float,
outdir: str,
init_seed: Optional[int],
class_idx: Optional[int],
w_path: Optional[str],
save_video: Optional[bool],
bigger_network_pkl: Optional[str],
):
assert not((w_path is None) and (init_seed is None)), "Provide either w-path or init-seed"
print('Loading networks from "%s"...' % network_pkl)
device = torch.device('cuda')
with dnnlib.util.open_url(network_pkl) as f:
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
os.makedirs(outdir, exist_ok=True)
# load or sample w
if w_path:
w = gen_utils.get_w_from_file(w_path, device)
w = w.repeat(1, G.num_ws, 1)
else:
w = gen_utils.get_w_from_seed(G, batch_sz=1, device=device, truncation_psi=1.0,
seed=init_seed, class_idx=class_idx)
# find direction
init_styles = w_s_converter(G, w.unbind(1), device=device)
direction = find_direction(
G, init_styles, text_prompt, layers=layers, seeds=seeds, class_idx=class_idx, device=device
)
# generate edited images
if bigger_network_pkl:
with dnnlib.util.open_url(bigger_network_pkl) as f:
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
# adjust styles
w = w[:, 0].repeat(1, G.mapping.num_ws, 1)
init_styles = w_s_converter(G, w.unbind(1), device=device)
padding = (0, 0, 0, init_styles.shape[1] - direction.shape[1])
direction = F.pad(direction, padding, "constant", 0)
text_prompt = text_prompt.replace(" ", "_")
path = f'{outdir}/{text_prompt}_{edit_strength}'
generate_edit(G, init_styles, direction, edit_strength=edit_strength, path=path,
save_video=save_video, device=device)
if __name__ == "__main__":
stylemc()