Skip to content

Commit e3bb62b

Browse files
author
Github Actions
committed
Eddie Bergman: Clearup warnings (#1238)
1 parent 3af0c5f commit e3bb62b

File tree

70 files changed

+573
-520
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

70 files changed

+573
-520
lines changed

development/_downloads/2991959d1e025c5f9f27e3b4d3265a81/example_multilabel_classification.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@
4444
},
4545
"outputs": [],
4646
"source": [
47-
"# Using reuters multilabel dataset -- https://www.openml.org/d/40594\nX, y = sklearn.datasets.fetch_openml(data_id=40594, return_X_y=True, as_frame=False)\n\n# fetch openml downloads a numpy array with TRUE/FALSE strings. Re-map it to\n# integer dtype with ones and zeros\n# This is to comply with Scikit-learn requirement:\n# \"Positive classes are indicated with 1 and negative classes with 0 or -1.\"\n# More information on: https://scikit-learn.org/stable/modules/multiclass.html\ny[y == 'TRUE'] = 1\ny[y == 'FALSE'] = 0\ny = y.astype(np.int)\n\n# Using type of target is a good way to make sure your data\n# is properly formatted\nprint(f\"type_of_target={type_of_target(y)}\")\n\nX_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(\n X, y, random_state=1\n)"
47+
"# Using reuters multilabel dataset -- https://www.openml.org/d/40594\nX, y = sklearn.datasets.fetch_openml(data_id=40594, return_X_y=True, as_frame=False)\n\n# fetch openml downloads a numpy array with TRUE/FALSE strings. Re-map it to\n# integer dtype with ones and zeros\n# This is to comply with Scikit-learn requirement:\n# \"Positive classes are indicated with 1 and negative classes with 0 or -1.\"\n# More information on: https://scikit-learn.org/stable/modules/multiclass.html\ny[y == 'TRUE'] = 1\ny[y == 'FALSE'] = 0\ny = y.astype(int)\n\n# Using type of target is a good way to make sure your data\n# is properly formatted\nprint(f\"type_of_target={type_of_target(y)}\")\n\nX_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(\n X, y, random_state=1\n)"
4848
]
4949
},
5050
{

development/_downloads/89647a1665eba015b7197cfe70420e4d/example_multilabel_classification.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@
3030
# More information on: https://scikit-learn.org/stable/modules/multiclass.html
3131
y[y == 'TRUE'] = 1
3232
y[y == 'FALSE'] = 0
33-
y = y.astype(np.int)
33+
y = y.astype(int)
3434

3535
# Using type of target is a good way to make sure your data
3636
# is properly formatted
Binary file not shown.
Binary file not shown.
Loading
Loading
Loading

development/_modules/autosklearn/estimators.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -346,13 +346,13 @@ <h1>Source code for autosklearn.estimators</h1><div class="highlight"><pre>
346346
<span class="sd"> Attributes</span>
347347
<span class="sd"> ----------</span>
348348

349-
<span class="sd"> cv_results\_ : dict of numpy (masked) ndarrays</span>
349+
<span class="sd"> cv_results_ : dict of numpy (masked) ndarrays</span>
350350
<span class="sd"> A dict with keys as column headers and values as columns, that can be</span>
351351
<span class="sd"> imported into a pandas ``DataFrame``.</span>
352352

353353
<span class="sd"> Not all keys returned by scikit-learn are supported yet.</span>
354354

355-
<span class="sd"> performance_over_time\_ : pandas.core.frame.DataFrame</span>
355+
<span class="sd"> performance_over_time_ : pandas.core.frame.DataFrame</span>
356356
<span class="sd"> A ``DataFrame`` containing the models performance over time data. Can be</span>
357357
<span class="sd"> used for plotting directly. Please refer to the example</span>
358358
<span class="sd"> :ref:`Train and Test Inputs &lt;sphx_glr_examples_40_advanced_example_pandas_train_test.py&gt;`.</span>

development/_modules/autosklearn/metrics.html

Lines changed: 50 additions & 31 deletions
Large diffs are not rendered by default.

development/_modules/autosklearn/pipeline/components/base.html

Lines changed: 8 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -259,13 +259,16 @@ <h1>Source code for autosklearn.pipeline.components.base</h1><div class="highlig
259259

260260

261261
<span class="k">class</span> <span class="nc">IterativeComponent</span><span class="p">(</span><span class="n">AutoSklearnComponent</span><span class="p">):</span>
262+
262263
<span class="k">def</span> <span class="nf">fit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">sample_weight</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
263264
<span class="bp">self</span><span class="o">.</span><span class="n">iterative_fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">n_iter</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">refit</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
265+
264266
<span class="n">iteration</span> <span class="o">=</span> <span class="mi">2</span>
265267
<span class="k">while</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">configuration_fully_fitted</span><span class="p">():</span>
266268
<span class="n">n_iter</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="mi">2</span> <span class="o">**</span> <span class="n">iteration</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span>
267269
<span class="bp">self</span><span class="o">.</span><span class="n">iterative_fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">n_iter</span><span class="o">=</span><span class="n">n_iter</span><span class="p">,</span> <span class="n">refit</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
268270
<span class="n">iteration</span> <span class="o">+=</span> <span class="mi">1</span>
271+
269272
<span class="k">return</span> <span class="bp">self</span>
270273

271274
<span class="nd">@staticmethod</span>
@@ -277,15 +280,16 @@ <h1>Source code for autosklearn.pipeline.components.base</h1><div class="highlig
277280

278281

279282
<span class="k">class</span> <span class="nc">IterativeComponentWithSampleWeight</span><span class="p">(</span><span class="n">AutoSklearnComponent</span><span class="p">):</span>
283+
280284
<span class="k">def</span> <span class="nf">fit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">sample_weight</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
281-
<span class="bp">self</span><span class="o">.</span><span class="n">iterative_fit</span><span class="p">(</span>
282-
<span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">n_iter</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">refit</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">sample_weight</span><span class="o">=</span><span class="n">sample_weight</span>
283-
<span class="p">)</span>
285+
<span class="bp">self</span><span class="o">.</span><span class="n">iterative_fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">n_iter</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">refit</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">sample_weight</span><span class="o">=</span><span class="n">sample_weight</span><span class="p">)</span>
286+
284287
<span class="n">iteration</span> <span class="o">=</span> <span class="mi">2</span>
285288
<span class="k">while</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">configuration_fully_fitted</span><span class="p">():</span>
286289
<span class="n">n_iter</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="mi">2</span> <span class="o">**</span> <span class="n">iteration</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span>
287-
<span class="bp">self</span><span class="o">.</span><span class="n">iterative_fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">n_iter</span><span class="o">=</span><span class="n">n_iter</span><span class="p">,</span> <span class="n">sample_weight</span><span class="o">=</span><span class="n">sample_weight</span><span class="p">)</span>
290+
<span class="bp">self</span><span class="o">.</span><span class="n">iterative_fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">n_iter</span><span class="o">=</span><span class="n">n_iter</span><span class="p">,</span> <span class="n">refit</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">sample_weight</span><span class="o">=</span><span class="n">sample_weight</span><span class="p">)</span>
288291
<span class="n">iteration</span> <span class="o">+=</span> <span class="mi">1</span>
292+
289293
<span class="k">return</span> <span class="bp">self</span>
290294

291295
<span class="nd">@staticmethod</span>

development/_sources/examples/20_basic/example_classification.rst.txt

Lines changed: 20 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -120,25 +120,25 @@ View the models found by auto-sklearn
120120
121121
rank ensemble_weight type cost duration
122122
model_id
123-
34 1 0.16 extra_trees 0.014184 2.207980
124-
7 2 0.10 extra_trees 0.014184 1.964377
125-
29 3 0.06 extra_trees 0.021277 2.252809
126-
16 4 0.04 gradient_boosting 0.021277 1.323334
127-
26 5 0.02 extra_trees 0.028369 2.898711
128-
22 6 0.04 gradient_boosting 0.028369 1.466107
129-
2 7 0.04 random_forest 0.028369 2.222874
130-
3 8 0.10 mlp 0.028369 1.336115
131-
14 9 0.02 mlp 0.028369 2.660230
132-
19 10 0.02 extra_trees 0.028369 3.563035
133-
17 11 0.02 gradient_boosting 0.035461 2.186083
134-
8 12 0.02 random_forest 0.035461 2.617924
135-
5 13 0.02 random_forest 0.035461 2.600851
136-
9 14 0.02 extra_trees 0.042553 2.392899
137-
30 15 0.08 liblinear_svc 0.042553 1.263751
138-
32 16 0.16 extra_trees 0.049645 2.269191
139-
33 17 0.02 random_forest 0.056738 2.508028
140-
28 18 0.04 bernoulli_nb 0.070922 1.163354
141-
20 19 0.02 passive_aggressive 0.078014 0.921606
123+
34 1 0.16 extra_trees 0.014184 2.158044
124+
7 2 0.10 extra_trees 0.014184 1.967495
125+
29 3 0.06 extra_trees 0.021277 2.250814
126+
16 4 0.04 gradient_boosting 0.021277 1.271585
127+
26 5 0.02 extra_trees 0.028369 2.775106
128+
22 6 0.04 gradient_boosting 0.028369 1.468125
129+
2 7 0.04 random_forest 0.028369 2.179592
130+
3 8 0.10 mlp 0.028369 1.314463
131+
14 9 0.02 mlp 0.028369 2.650562
132+
19 10 0.02 extra_trees 0.028369 3.390082
133+
17 11 0.02 gradient_boosting 0.035461 2.128715
134+
8 12 0.02 random_forest 0.035461 2.570254
135+
5 13 0.02 random_forest 0.035461 2.554585
136+
9 14 0.02 extra_trees 0.042553 2.313817
137+
30 15 0.08 liblinear_svc 0.042553 1.259079
138+
32 16 0.16 extra_trees 0.049645 2.301594
139+
33 17 0.02 random_forest 0.056738 2.475844
140+
28 18 0.04 bernoulli_nb 0.070922 1.155173
141+
20 19 0.02 passive_aggressive 0.078014 0.918509
142142
143143
144144
@@ -353,7 +353,7 @@ Get the Score of the final ensemble
353353
354354
.. rst-class:: sphx-glr-timing
355355

356-
**Total running time of the script:** ( 2 minutes 4.034 seconds)
356+
**Total running time of the script:** ( 1 minutes 59.584 seconds)
357357

358358

359359
.. _sphx_glr_download_examples_20_basic_example_classification.py:

development/_sources/examples/20_basic/example_multilabel_classification.rst.txt

Lines changed: 3 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -66,7 +66,7 @@ Data Loading
6666
# More information on: https://scikit-learn.org/stable/modules/multiclass.html
6767
y[y == 'TRUE'] = 1
6868
y[y == 'FALSE'] = 0
69-
y = y.astype(np.int)
69+
y = y.astype(int)
7070
7171
# Using type of target is a good way to make sure your data
7272
# is properly formatted
@@ -86,9 +86,6 @@ Data Loading
8686

8787
.. code-block:: none
8888
89-
/home/runner/work/auto-sklearn/auto-sklearn/examples/20_basic/example_multilabel_classification.py:33: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
90-
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
91-
y = y.astype(np.int)
9289
type_of_target=multilabel-indicator
9390
9491
@@ -157,7 +154,7 @@ View the models found by auto-sklearn
157154
158155
rank ensemble_weight type cost duration
159156
model_id
160-
2 1 1.0 random_forest 0.447294 4.436343
157+
2 1 1.0 random_forest 0.447294 4.533196
161158
162159
163160
@@ -265,7 +262,7 @@ Get the Score of the final ensemble
265262
266263
.. rst-class:: sphx-glr-timing
267264

268-
**Total running time of the script:** ( 0 minutes 16.045 seconds)
265+
**Total running time of the script:** ( 0 minutes 16.172 seconds)
269266

270267

271268
.. _sphx_glr_download_examples_20_basic_example_multilabel_classification.py:

development/_sources/examples/20_basic/example_multioutput_regression.rst.txt

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -122,9 +122,9 @@ View the models found by auto-sklearn
122122

123123
.. code-block:: none
124124
125-
rank ensemble_weight type cost duration
126-
model_id
127-
14 1 1.0 gaussian_process 0.000033 4.520127
125+
rank ensemble_weight type cost duration
126+
model_id
127+
19 1 1.0 gaussian_process 1.718088e-08 4.366592
128128
129129
130130
@@ -151,7 +151,7 @@ Print the final ensemble constructed by auto-sklearn
151151

152152
.. code-block:: none
153153
154-
[(1.000000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'regressor:__choice__': 'gaussian_process', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'power_transformer', 'feature_preprocessor:feature_agglomeration:affinity': 'manhattan', 'feature_preprocessor:feature_agglomeration:linkage': 'average', 'feature_preprocessor:feature_agglomeration:n_clusters': 365, 'feature_preprocessor:feature_agglomeration:pooling_func': 'mean', 'regressor:gaussian_process:alpha': 0.0001892420474677165, 'regressor:gaussian_process:thetaL': 1.7549152191973897e-09, 'regressor:gaussian_process:thetaU': 2227.384462976473},
154+
[(1.000000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'regressor:__choice__': 'gaussian_process', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'regressor:gaussian_process:alpha': 7.521590906155149e-08, 'regressor:gaussian_process:thetaL': 4.052724541973572e-07, 'regressor:gaussian_process:thetaU': 17472.745774310217, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.43055420836443836, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.827399658564819, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.13037866143850987},
155155
dataset_properties={
156156
'task': 5,
157157
'sparse': False,
@@ -186,7 +186,7 @@ Get the Score of the final ensemble
186186

187187
.. code-block:: none
188188
189-
R2 score: 0.999962998298447
189+
R2 score: 0.9999997983759025
190190
191191
192192
@@ -409,7 +409,7 @@ Get the configuration space
409409
410410
.. rst-class:: sphx-glr-timing
411411

412-
**Total running time of the script:** ( 1 minutes 56.999 seconds)
412+
**Total running time of the script:** ( 1 minutes 56.909 seconds)
413413

414414

415415
.. _sphx_glr_download_examples_20_basic_example_multioutput_regression.py:

development/_sources/examples/20_basic/example_regression.rst.txt

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -121,11 +121,11 @@ View the models found by auto-sklearn
121121
122122
rank ensemble_weight type cost duration
123123
model_id
124-
25 1 0.46 sgd 0.436679 0.850374
125-
6 2 0.32 ard_regression 0.455042 0.852782
126-
27 3 0.14 ard_regression 0.462249 0.827338
127-
11 4 0.02 random_forest 0.507400 11.182383
128-
7 5 0.06 gradient_boosting 0.518673 1.586598
124+
25 1 0.46 sgd 0.436679 0.802876
125+
6 2 0.32 ard_regression 0.455042 0.828461
126+
27 3 0.14 ard_regression 0.462249 0.795954
127+
11 4 0.02 random_forest 0.507400 10.710532
128+
7 5 0.06 gradient_boosting 0.518673 1.571794
129129
130130
131131
@@ -267,7 +267,7 @@ the true value).
267267

268268
.. rst-class:: sphx-glr-timing
269269

270-
**Total running time of the script:** ( 1 minutes 54.910 seconds)
270+
**Total running time of the script:** ( 1 minutes 56.097 seconds)
271271

272272

273273
.. _sphx_glr_download_examples_20_basic_example_regression.py:

0 commit comments

Comments
 (0)