63
63
< li > < a href ="../../index.html "> Start</ a > </ li >
64
64
< li > < a href ="../../releases.html "> Releases</ a > </ li >
65
65
< li > < a href ="../../installation.html "> Installation</ a > </ li >
66
- < li > < a href ="../../manual.html "> Manual</ a > </ li >
67
66
< li > < a href ="../../examples/index.html "> Examples</ a > </ li >
68
67
< li > < a href ="../../api.html "> API</ a > </ li >
69
68
< li > < a href ="../../extending.html "> Extending</ a > </ li >
@@ -189,7 +188,7 @@ <h1>Source code for autosklearn.estimators</h1><div class="highlight"><pre>
189
188
< span class ="sd "> ensemble_size : int, optional (default=50)</ span >
190
189
< span class ="sd "> Number of models added to the ensemble built by *Ensemble</ span >
191
190
< span class ="sd "> selection from libraries of models*. Models are drawn with</ span >
192
- < span class ="sd "> replacement.</ span >
191
+ < span class ="sd "> replacement. If set to ``0`` no ensemble is fit. </ span >
193
192
194
193
< span class ="sd "> ensemble_nbest : int, optional (default=50)</ span >
195
194
< span class ="sd "> Only consider the ``ensemble_nbest`` models when building an</ span >
@@ -209,10 +208,14 @@ <h1>Source code for autosklearn.estimators</h1><div class="highlight"><pre>
209
208
< span class ="sd "> memory_limit : int, optional (3072)</ span >
210
209
< span class ="sd "> Memory limit in MB for the machine learning algorithm.</ span >
211
210
< span class ="sd "> `auto-sklearn` will stop fitting the machine learning algorithm if</ span >
212
- < span class ="sd "> it tries to allocate more than `memory_limit` MB.</ span >
213
- < span class ="sd "> If None is provided, no memory limit is set.</ span >
214
- < span class ="sd "> In case of multi-processing, `memory_limit` will be per job.</ span >
215
- < span class ="sd "> This memory limit also applies to the ensemble creation process.</ span >
211
+ < span class ="sd "> it tries to allocate more than ``memory_limit`` MB.</ span >
212
+ < span class ="sd "> </ span >
213
+ < span class ="sd "> **Important notes:** </ span >
214
+ < span class ="sd "> </ span >
215
+ < span class ="sd "> * If ``None`` is provided, no memory limit is set.</ span >
216
+ < span class ="sd "> * In case of multi-processing, ``memory_limit`` will be *per job*, so the total usage is </ span >
217
+ < span class ="sd "> ``n_jobs x memory_limit``.</ span >
218
+ < span class ="sd "> * The memory limit also applies to the ensemble creation process.</ span >
216
219
217
220
< span class ="sd "> include : dict, optional (None)</ span >
218
221
< span class ="sd "> If None, all possible algorithms are used. Otherwise specifies</ span >
@@ -258,10 +261,10 @@ <h1>Source code for autosklearn.estimators</h1><div class="highlight"><pre>
258
261
< span class ="sd "> * 'cv-iterative-fit': {'folds': int}</ span >
259
262
< span class ="sd "> * 'partial-cv': {'folds': int, 'shuffle': bool}</ span >
260
263
< span class ="sd "> * BaseCrossValidator or _RepeatedSplits or BaseShuffleSplit object: all arguments</ span >
261
- < span class ="sd "> required by chosen class as specified in scikit-learn documentation.</ span >
262
- < span class ="sd "> If arguments are not provided, scikit-learn defaults are used.</ span >
263
- < span class ="sd "> If no defaults are available, an exception is raised.</ span >
264
- < span class ="sd "> Refer to the 'n_splits' argument as 'folds'.</ span >
264
+ < span class ="sd "> required by chosen class as specified in scikit-learn documentation.</ span >
265
+ < span class ="sd "> If arguments are not provided, scikit-learn defaults are used.</ span >
266
+ < span class ="sd "> If no defaults are available, an exception is raised.</ span >
267
+ < span class ="sd "> Refer to the 'n_splits' argument as 'folds'.</ span >
265
268
266
269
< span class ="sd "> tmp_folder : string, optional (None)</ span >
267
270
< span class ="sd "> folder to store configuration output and log files, if ``None``</ span >
@@ -273,13 +276,15 @@ <h1>Source code for autosklearn.estimators</h1><div class="highlight"><pre>
273
276
274
277
< span class ="sd "> n_jobs : int, optional, experimental</ span >
275
278
< span class ="sd "> The number of jobs to run in parallel for ``fit()``. ``-1`` means</ span >
276
- < span class ="sd "> using all processors. By default, Auto-sklearn uses a single core</ span >
277
- < span class ="sd "> for fitting the machine learning model and a single core for fitting</ span >
278
- < span class ="sd "> an ensemble. Ensemble building is not affected by ``n_jobs`` but</ span >
279
- < span class ="sd "> can be controlled by the number of models in the ensemble. In</ span >
280
- < span class ="sd "> contrast to most scikit-learn models, ``n_jobs`` given in the</ span >
281
- < span class ="sd "> constructor is not applied to the ``predict()`` method. If</ span >
282
- < span class ="sd "> ``dask_client`` is None, a new dask client is created.</ span >
279
+ < span class ="sd "> using all processors. </ span >
280
+ < span class ="sd "> </ span >
281
+ < span class ="sd "> **Important notes**: </ span >
282
+ < span class ="sd "> </ span >
283
+ < span class ="sd "> * By default, Auto-sklearn uses one core. </ span >
284
+ < span class ="sd "> * Ensemble building is not affected by ``n_jobs`` but can be controlled by the number </ span >
285
+ < span class ="sd "> of models in the ensemble.</ span >
286
+ < span class ="sd "> * ``predict()`` is not affected by ``n_jobs`` (in contrast to most scikit-learn models)</ span >
287
+ < span class ="sd "> * If ``dask_client`` is ``None``, a new dask client is created.</ span >
283
288
284
289
< span class ="sd "> dask_client : dask.distributed.Client, optional</ span >
285
290
< span class ="sd "> User-created dask client, can be used to start a dask cluster and then</ span >
@@ -295,7 +300,7 @@ <h1>Source code for autosklearn.estimators</h1><div class="highlight"><pre>
295
300
< span class ="sd "> * ``'y_optimization'`` : do not save the predictions for the</ span >
296
301
< span class ="sd "> optimization/validation set, which would later on be used to build</ span >
297
302
< span class ="sd "> an ensemble.</ span >
298
- < span class ="sd "> * ``' model' `` : do not save any model files</ span >
303
+ < span class ="sd "> * ``model`` : do not save any model files</ span >
299
304
300
305
< span class ="sd "> smac_scenario_args : dict, optional (None)</ span >
301
306
< span class ="sd "> Additional arguments inserted into the scenario of SMAC. See the</ span >
@@ -672,7 +677,7 @@ <h1>Source code for autosklearn.estimators</h1><div class="highlight"><pre>
672
677
< span class ="sd "> Gives an overview of all models trained during the search process along</ span >
673
678
< span class ="sd "> with various statistics about their training.</ span >
674
679
675
- < span class ="sd "> The availble statistics are:</ span >
680
+ < span class ="sd "> The available statistics are:</ span >
676
681
677
682
< span class ="sd "> **Simple**:</ span >
678
683
0 commit comments