Skip to content

Commit 5b14d2d

Browse files
Extend docs (#1309)
* re-structure manual and use 'collapse' * ADD link to auto-sklearn-talks * unifying titles * Clarify default memory and cpu usage * FIX sphinx_gallery to <=0.10.0 0.10.1 would raise an error for '-D plot_gallery=0' * Re-structure faq * FIX comments by mfeurer * boldface items * merge manual into FAQ * FIX minor * FIX typo * Update doc/faq.rst Co-authored-by: Eddie Bergman <eddiebergmanhs@gmail.com> * Update doc/faq.rst Co-authored-by: Eddie Bergman <eddiebergmanhs@gmail.com> * Update doc/faq.rst Co-authored-by: Eddie Bergman <eddiebergmanhs@gmail.com> * Update doc/faq.rst Co-authored-by: Eddie Bergman <eddiebergmanhs@gmail.com> * Update doc/manual.rst Co-authored-by: Eddie Bergman <eddiebergmanhs@gmail.com> * Update doc/manual.rst Co-authored-by: Eddie Bergman <eddiebergmanhs@gmail.com> * Update doc/faq.rst Co-authored-by: Eddie Bergman <eddiebergmanhs@gmail.com> * FIX link Co-authored-by: Eddie Bergman <eddiebergmanhs@gmail.com>
1 parent f22c986 commit 5b14d2d

File tree

8 files changed

+743
-401
lines changed

8 files changed

+743
-401
lines changed

autosklearn/estimators.py

Lines changed: 24 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -76,7 +76,7 @@ def __init__(
7676
ensemble_size : int, optional (default=50)
7777
Number of models added to the ensemble built by *Ensemble
7878
selection from libraries of models*. Models are drawn with
79-
replacement.
79+
replacement. If set to ``0`` no ensemble is fit.
8080
8181
ensemble_nbest : int, optional (default=50)
8282
Only consider the ``ensemble_nbest`` models when building an
@@ -96,10 +96,14 @@ def __init__(
9696
memory_limit : int, optional (3072)
9797
Memory limit in MB for the machine learning algorithm.
9898
`auto-sklearn` will stop fitting the machine learning algorithm if
99-
it tries to allocate more than `memory_limit` MB.
100-
If None is provided, no memory limit is set.
101-
In case of multi-processing, `memory_limit` will be per job.
102-
This memory limit also applies to the ensemble creation process.
99+
it tries to allocate more than ``memory_limit`` MB.
100+
101+
**Important notes:**
102+
103+
* If ``None`` is provided, no memory limit is set.
104+
* In case of multi-processing, ``memory_limit`` will be *per job*, so the total usage is
105+
``n_jobs x memory_limit``.
106+
* The memory limit also applies to the ensemble creation process.
103107
104108
include : dict, optional (None)
105109
If None, all possible algorithms are used. Otherwise specifies
@@ -145,10 +149,10 @@ def __init__(
145149
* 'cv-iterative-fit': {'folds': int}
146150
* 'partial-cv': {'folds': int, 'shuffle': bool}
147151
* BaseCrossValidator or _RepeatedSplits or BaseShuffleSplit object: all arguments
148-
required by chosen class as specified in scikit-learn documentation.
149-
If arguments are not provided, scikit-learn defaults are used.
150-
If no defaults are available, an exception is raised.
151-
Refer to the 'n_splits' argument as 'folds'.
152+
required by chosen class as specified in scikit-learn documentation.
153+
If arguments are not provided, scikit-learn defaults are used.
154+
If no defaults are available, an exception is raised.
155+
Refer to the 'n_splits' argument as 'folds'.
152156
153157
tmp_folder : string, optional (None)
154158
folder to store configuration output and log files, if ``None``
@@ -160,13 +164,15 @@ def __init__(
160164
161165
n_jobs : int, optional, experimental
162166
The number of jobs to run in parallel for ``fit()``. ``-1`` means
163-
using all processors. By default, Auto-sklearn uses a single core
164-
for fitting the machine learning model and a single core for fitting
165-
an ensemble. Ensemble building is not affected by ``n_jobs`` but
166-
can be controlled by the number of models in the ensemble. In
167-
contrast to most scikit-learn models, ``n_jobs`` given in the
168-
constructor is not applied to the ``predict()`` method. If
169-
``dask_client`` is None, a new dask client is created.
167+
using all processors.
168+
169+
**Important notes**:
170+
171+
* By default, Auto-sklearn uses one core.
172+
* Ensemble building is not affected by ``n_jobs`` but can be controlled by the number
173+
of models in the ensemble.
174+
* ``predict()`` is not affected by ``n_jobs`` (in contrast to most scikit-learn models)
175+
* If ``dask_client`` is ``None``, a new dask client is created.
170176
171177
dask_client : dask.distributed.Client, optional
172178
User-created dask client, can be used to start a dask cluster and then
@@ -182,7 +188,7 @@ def __init__(
182188
* ``'y_optimization'`` : do not save the predictions for the
183189
optimization/validation set, which would later on be used to build
184190
an ensemble.
185-
* ``'model'`` : do not save any model files
191+
* ``model`` : do not save any model files
186192
187193
smac_scenario_args : dict, optional (None)
188194
Additional arguments inserted into the scenario of SMAC. See the
@@ -559,7 +565,7 @@ def leaderboard(
559565
Gives an overview of all models trained during the search process along
560566
with various statistics about their training.
561567
562-
The availble statistics are:
568+
The available statistics are:
563569
564570
**Simple**:
565571

autosklearn/experimental/askl2.py

Lines changed: 19 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -218,7 +218,7 @@ def __init__(
218218
ensemble_size : int, optional (default=50)
219219
Number of models added to the ensemble built by *Ensemble
220220
selection from libraries of models*. Models are drawn with
221-
replacement.
221+
replacement. If set to ``0`` no ensemble is fit.
222222
223223
ensemble_nbest : int, optional (default=50)
224224
Only consider the ``ensemble_nbest`` models when building an
@@ -238,10 +238,14 @@ def __init__(
238238
memory_limit : int, optional (3072)
239239
Memory limit in MB for the machine learning algorithm.
240240
`auto-sklearn` will stop fitting the machine learning algorithm if
241-
it tries to allocate more than `memory_limit` MB.
242-
If None is provided, no memory limit is set.
243-
In case of multi-processing, `memory_limit` will be per job.
244-
This memory limit also applies to the ensemble creation process.
241+
it tries to allocate more than ``memory_limit`` MB.
242+
243+
**Important notes:**
244+
245+
* If ``None`` is provided, no memory limit is set.
246+
* In case of multi-processing, ``memory_limit`` will be *per job*, so the total usage is
247+
``n_jobs x memory_limit``.
248+
* The memory limit also applies to the ensemble creation process.
245249
246250
tmp_folder : string, optional (None)
247251
folder to store configuration output and log files, if ``None``
@@ -253,13 +257,15 @@ def __init__(
253257
254258
n_jobs : int, optional, experimental
255259
The number of jobs to run in parallel for ``fit()``. ``-1`` means
256-
using all processors. By default, Auto-sklearn uses a single core
257-
for fitting the machine learning model and a single core for fitting
258-
an ensemble. Ensemble building is not affected by ``n_jobs`` but
259-
can be controlled by the number of models in the ensemble. In
260-
contrast to most scikit-learn models, ``n_jobs`` given in the
261-
constructor is not applied to the ``predict()`` method. If
262-
``dask_client`` is None, a new dask client is created.
260+
using all processors.
261+
262+
**Important notes**:
263+
264+
* By default, Auto-sklearn uses one core.
265+
* Ensemble building is not affected by ``n_jobs`` but can be controlled by the number
266+
of models in the ensemble.
267+
* ``predict()`` is not affected by ``n_jobs`` (in contrast to most scikit-learn models)
268+
* If ``dask_client`` is ``None``, a new dask client is created.
263269
264270
dask_client : dask.distributed.Client, optional
265271
User-created dask client, can be used to start a dask cluster and then
@@ -275,7 +281,7 @@ def __init__(
275281
* ``'y_optimization'`` : do not save the predictions for the
276282
optimization/validation set, which would later on be used to build
277283
an ensemble.
278-
* ``'model'`` : do not save any model files
284+
* ``model`` : do not save any model files
279285
280286
smac_scenario_args : dict, optional (None)
281287
Additional arguments inserted into the scenario of SMAC. See the

doc/conf.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -43,6 +43,7 @@
4343
'sphinx.ext.doctest', 'sphinx.ext.coverage',
4444
'sphinx.ext.mathjax', 'sphinx.ext.viewcode',
4545
'sphinx_gallery.gen_gallery', 'sphinx.ext.autosectionlabel',
46+
'sphinx_toolbox.collapse',
4647
# sphinx.ext.autosexctionlabel raises duplicate label warnings
4748
# because same section headers are used multiple times throughout
4849
# the documentation.
@@ -180,7 +181,7 @@
180181
('Start', 'index'),
181182
('Releases', 'releases'),
182183
('Installation', 'installation'),
183-
('Manual', 'manual'),
184+
#('Manual', 'manual'),
184185
('Examples', 'examples/index'),
185186
('API', 'api'),
186187
('Extending', 'extending'),

0 commit comments

Comments
 (0)