Skip to content

Commit 5266af8

Browse files
committed
Remove uneeded ignore warnings from tests
1 parent f9997b1 commit 5266af8

File tree

2 files changed

+59
-93
lines changed

2 files changed

+59
-93
lines changed

test/test_automl/test_automl.py

Lines changed: 21 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,3 @@
1-
from ..test_pipeline.ignored_warnings import ignore_warnings
2-
31
# -*- encoding: utf-8 -*-
42
import itertools
53
import os
@@ -67,17 +65,16 @@ def test_fit(dask_client):
6765
dask_client=dask_client,
6866
)
6967

70-
with ignore_warnings():
71-
automl.fit(X_train, Y_train, task=MULTICLASS_CLASSIFICATION)
68+
automl.fit(X_train, Y_train, task=MULTICLASS_CLASSIFICATION)
7269

73-
score = automl.score(X_test, Y_test)
74-
assert score > 0.8
75-
assert count_succeses(automl.cv_results_) > 0
76-
assert includes_train_scores(automl.performance_over_time_.columns) is True
77-
assert performance_over_time_is_plausible(automl.performance_over_time_) is True
78-
assert automl._task == MULTICLASS_CLASSIFICATION
70+
score = automl.score(X_test, Y_test)
71+
assert score > 0.8
72+
assert count_succeses(automl.cv_results_) > 0
73+
assert includes_train_scores(automl.performance_over_time_.columns) is True
74+
assert performance_over_time_is_plausible(automl.performance_over_time_) is True
75+
assert automl._task == MULTICLASS_CLASSIFICATION
7976

80-
del automl
77+
del automl
8178

8279

8380
def test_fit_roar(dask_client_single_worker):
@@ -112,8 +109,8 @@ def get_roar_object_callback(
112109
metric=accuracy,
113110
dask_client=dask_client_single_worker,
114111
)
115-
with ignore_warnings():
116-
automl.fit(X_train, Y_train, task=MULTICLASS_CLASSIFICATION)
112+
113+
automl.fit(X_train, Y_train, task=MULTICLASS_CLASSIFICATION)
117114

118115
score = automl.score(X_test, Y_test)
119116
assert score > 0.8
@@ -227,8 +224,7 @@ def test_delete_non_candidate_models(dask_client):
227224
max_models_on_disc=3,
228225
)
229226

230-
with ignore_warnings():
231-
automl.fit(X, Y, task=MULTICLASS_CLASSIFICATION, X_test=X, y_test=Y)
227+
automl.fit(X, Y, task=MULTICLASS_CLASSIFICATION, X_test=X, y_test=Y)
232228

233229
# Assert at least one model file has been deleted and that there were no
234230
# deletion errors
@@ -275,8 +271,7 @@ def test_binary_score_and_include(dask_client):
275271
dask_client=dask_client,
276272
)
277273

278-
with ignore_warnings():
279-
automl.fit(X_train, Y_train, task=BINARY_CLASSIFICATION)
274+
automl.fit(X_train, Y_train, task=BINARY_CLASSIFICATION)
280275

281276
assert automl._task == BINARY_CLASSIFICATION
282277

@@ -301,15 +296,14 @@ def test_automl_outputs(dask_client):
301296
delete_tmp_folder_after_terminate=False,
302297
)
303298

304-
with ignore_warnings():
305-
auto.fit(
306-
X=X_train,
307-
y=Y_train,
308-
X_test=X_test,
309-
y_test=Y_test,
310-
dataset_name=name,
311-
task=MULTICLASS_CLASSIFICATION,
312-
)
299+
auto.fit(
300+
X=X_train,
301+
y=Y_train,
302+
X_test=X_test,
303+
y_test=Y_test,
304+
dataset_name=name,
305+
task=MULTICLASS_CLASSIFICATION,
306+
)
313307

314308
data_manager_file = os.path.join(
315309
auto._backend.temporary_directory,
@@ -633,8 +627,7 @@ def test_load_best_individual_model(metric, dask_client):
633627
# We cannot easily mock a function sent to dask
634628
# so for this test we create the whole set of models/ensembles
635629
# but prevent it to be loaded
636-
with ignore_warnings():
637-
automl.fit(X_train, Y_train, task=MULTICLASS_CLASSIFICATION)
630+
automl.fit(X_train, Y_train, task=MULTICLASS_CLASSIFICATION)
638631

639632
automl._backend.load_ensemble = unittest.mock.MagicMock(return_value=None)
640633

test/test_automl/test_estimators.py

Lines changed: 38 additions & 65 deletions
Original file line numberDiff line numberDiff line change
@@ -41,8 +41,6 @@
4141
from autosklearn.experimental.askl2 import AutoSklearn2Classifier
4242
from autosklearn.smbo import get_smac_object
4343

44-
from ..test_pipeline.ignored_warnings import ignore_warnings
45-
4644
sys.path.append(os.path.dirname(__file__))
4745
from automl_utils import print_debug_information, count_succeses, includes_train_scores, includes_all_scores, include_single_scores, performance_over_time_is_plausible # noqa (E402: module level import not at top of file)
4846

@@ -82,8 +80,7 @@ def __call__(self, *args, **kwargs):
8280
max_models_on_disc=None,
8381
)
8482

85-
with ignore_warnings():
86-
automl.fit(X_train, Y_train)
83+
automl.fit(X_train, Y_train)
8784

8885
# Test that the argument is correctly passed to SMAC
8986
assert getattr(get_smac_object_wrapper_instance, 'n_jobs') == 2
@@ -277,8 +274,7 @@ def test_performance_over_time_no_ensemble(tmp_dir):
277274
initial_configurations_via_metalearning=0,
278275
ensemble_size=0,)
279276

280-
with ignore_warnings():
281-
cls.fit(X_train, Y_train, X_test, Y_test)
277+
cls.fit(X_train, Y_train, X_test, Y_test)
282278

283279
performance_over_time = cls.performance_over_time_
284280
assert include_single_scores(performance_over_time.columns) is True
@@ -302,8 +298,7 @@ def test_cv_results(tmp_dir):
302298
params = cls.get_params()
303299
original_params = copy.deepcopy(params)
304300

305-
with ignore_warnings():
306-
cls.fit(X_train, Y_train)
301+
cls.fit(X_train, Y_train)
307302

308303
cv_results = cls.cv_results_
309304
assert isinstance(cv_results, dict), type(cv_results)
@@ -391,8 +386,7 @@ def test_leaderboard(
391386
seed=1
392387
)
393388

394-
with ignore_warnings():
395-
model.fit(X_train, Y_train)
389+
model.fit(X_train, Y_train)
396390

397391
for params in params_generator:
398392
# Convert from iterator to solid list
@@ -551,8 +545,7 @@ def test_can_pickle_classifier(tmp_dir, dask_client):
551545
dask_client=dask_client,
552546
)
553547

554-
with ignore_warnings():
555-
automl.fit(X_train, Y_train)
548+
automl.fit(X_train, Y_train)
556549

557550
initial_predictions = automl.predict(X_test)
558551
initial_accuracy = sklearn.metrics.accuracy_score(Y_test,
@@ -601,8 +594,7 @@ def test_multilabel(tmp_dir, dask_client):
601594
dask_client=dask_client,
602595
)
603596

604-
with ignore_warnings():
605-
automl.fit(X_train, Y_train)
597+
automl.fit(X_train, Y_train)
606598

607599
predictions = automl.predict(X_test)
608600
assert predictions.shape == (50, 3), print_debug_information(automl)
@@ -628,9 +620,8 @@ def test_binary(tmp_dir, dask_client):
628620
dask_client=dask_client,
629621
)
630622

631-
with ignore_warnings():
632-
automl.fit(X_train, Y_train, X_test=X_test, y_test=Y_test,
633-
dataset_name='binary_test_dataset')
623+
automl.fit(X_train, Y_train, X_test=X_test, y_test=Y_test,
624+
dataset_name='binary_test_dataset')
634625

635626
predictions = automl.predict(X_test)
636627
assert predictions.shape == (50, ), print_debug_information(automl)
@@ -665,15 +656,13 @@ def test_classification_pandas_support(tmp_dir, dask_client):
665656
tmp_folder=tmp_dir,
666657
)
667658

668-
with ignore_warnings():
669-
automl.fit(X, y)
659+
automl.fit(X, y)
670660

671661
# Make sure that at least better than random.
672662
# We use same X_train==X_test to test code quality
673663
assert automl.score(X, y) > 0.555, print_debug_information(automl)
674664

675-
with ignore_warnings():
676-
automl.refit(X, y)
665+
automl.refit(X, y)
677666

678667
# Make sure that at least better than random.
679668
# accuracy in sklearn needs valid data
@@ -694,8 +683,7 @@ def test_regression(tmp_dir, dask_client):
694683
dask_client=dask_client,
695684
)
696685

697-
with ignore_warnings():
698-
automl.fit(X_train, Y_train)
686+
automl.fit(X_train, Y_train)
699687

700688
predictions = automl.predict(X_test)
701689
assert predictions.shape == (356,)
@@ -724,8 +712,7 @@ def test_cv_regression(tmp_dir, dask_client):
724712
dask_client=dask_client,
725713
)
726714

727-
with ignore_warnings():
728-
automl.fit(X_train, Y_train)
715+
automl.fit(X_train, Y_train)
729716

730717
predictions = automl.predict(X_test)
731718
assert predictions.shape == (206,)
@@ -754,15 +741,13 @@ def test_regression_pandas_support(tmp_dir, dask_client):
754741
)
755742

756743
# Make sure we error out because y is not encoded
757-
with ignore_warnings():
758-
automl.fit(X, y)
744+
automl.fit(X, y)
759745

760746
# Make sure that at least better than random.
761747
# We use same X_train==X_test to test code quality
762748
assert automl.score(X, y) >= 0.5, print_debug_information(automl)
763749

764-
with ignore_warnings():
765-
automl.refit(X, y)
750+
automl.refit(X, y)
766751

767752
# Make sure that at least better than random.
768753
assert r2(y, automl.predict(X)) > 0.5, print_debug_information(automl)
@@ -784,16 +769,14 @@ def test_autosklearn_classification_methods_returns_self(dask_client):
784769
dask_client=dask_client,
785770
exclude={'feature_preprocessor': ['fast_ica']})
786771

787-
with ignore_warnings():
788-
automl_fitted = automl.fit(X_train, y_train)
772+
automl_fitted = automl.fit(X_train, y_train)
789773

790774
assert automl is automl_fitted
791775

792776
automl_ensemble_fitted = automl.fit_ensemble(y_train, ensemble_size=5)
793777
assert automl is automl_ensemble_fitted
794778

795-
with ignore_warnings():
796-
automl_refitted = automl.refit(X_train.copy(), y_train.copy())
779+
automl_refitted = automl.refit(X_train.copy(), y_train.copy())
797780

798781
assert automl is automl_refitted
799782

@@ -808,15 +791,13 @@ def test_autosklearn_regression_methods_returns_self(dask_client):
808791
dask_client=dask_client,
809792
ensemble_size=0)
810793

811-
with ignore_warnings():
812-
automl_fitted = automl.fit(X_train, y_train)
794+
automl_fitted = automl.fit(X_train, y_train)
813795
assert automl is automl_fitted
814796

815797
automl_ensemble_fitted = automl.fit_ensemble(y_train, ensemble_size=5)
816798
assert automl is automl_ensemble_fitted
817799

818-
with ignore_warnings():
819-
automl_refitted = automl.refit(X_train.copy(), y_train.copy())
800+
automl_refitted = automl.refit(X_train.copy(), y_train.copy())
820801
assert automl is automl_refitted
821802

822803

@@ -826,16 +807,14 @@ def test_autosklearn2_classification_methods_returns_self(dask_client):
826807
delete_tmp_folder_after_terminate=False,
827808
dask_client=dask_client)
828809

829-
with ignore_warnings():
830-
automl_fitted = automl.fit(X_train, y_train)
810+
automl_fitted = automl.fit(X_train, y_train)
831811

832812
assert automl is automl_fitted
833813

834814
automl_ensemble_fitted = automl.fit_ensemble(y_train, ensemble_size=5)
835815
assert automl is automl_ensemble_fitted
836816

837-
with ignore_warnings():
838-
automl_refitted = automl.refit(X_train.copy(), y_train.copy())
817+
automl_refitted = automl.refit(X_train.copy(), y_train.copy())
839818

840819
assert automl is automl_refitted
841820

@@ -853,16 +832,14 @@ def test_autosklearn2_classification_methods_returns_self_sparse(dask_client):
853832
delete_tmp_folder_after_terminate=False,
854833
dask_client=dask_client)
855834

856-
with ignore_warnings():
857-
automl_fitted = automl.fit(X_train, y_train)
835+
automl_fitted = automl.fit(X_train, y_train)
858836

859837
assert automl is automl_fitted
860838

861839
automl_ensemble_fitted = automl.fit_ensemble(y_train, ensemble_size=5)
862840
assert automl is automl_ensemble_fitted
863841

864-
with ignore_warnings():
865-
automl_refitted = automl.refit(X_train.copy(), y_train.copy())
842+
automl_refitted = automl.refit(X_train.copy(), y_train.copy())
866843

867844
assert automl is automl_refitted
868845

@@ -967,16 +944,15 @@ def test_fit_pipeline(dask_client, task_type, resampling_strategy, disable_file_
967944
X_test=X_test, y_test=y_test,
968945
).get_default_configuration()
969946

970-
with ignore_warnings():
971-
pipeline, run_info, run_value = automl.fit_pipeline(
972-
X=X_train,
973-
y=y_train,
974-
config=config,
975-
X_test=X_test,
976-
y_test=y_test,
977-
disable_file_output=disable_file_output,
978-
resampling_strategy=resampling_strategy
979-
)
947+
pipeline, run_info, run_value = automl.fit_pipeline(
948+
X=X_train,
949+
y=y_train,
950+
config=config,
951+
X_test=X_test,
952+
y_test=y_test,
953+
disable_file_output=disable_file_output,
954+
resampling_strategy=resampling_strategy
955+
)
980956

981957
assert isinstance(run_info.config, Configuration)
982958
assert run_info.cutoff == 30
@@ -1076,11 +1052,10 @@ def test_pass_categorical_and_numeric_columns_to_pipeline(
10761052
)
10771053
config = config_space.get_default_configuration()
10781054

1079-
with ignore_warnings():
1080-
pipeline, _, run_value = automl.fit_pipeline(
1081-
X=X_train, y=y_train, X_test=X_test, y_test=y_test,
1082-
config=config, feat_type=feat_type,
1083-
)
1055+
pipeline, _, run_value = automl.fit_pipeline(
1056+
X=X_train, y=y_train, X_test=X_test, y_test=y_test,
1057+
config=config, feat_type=feat_type,
1058+
)
10841059

10851060
assert pipeline is not None, "Expected a pipeline from automl.fit_pipeline"
10861061

@@ -1129,17 +1104,15 @@ def test_autosklearn_anneal(as_frame):
11291104
resampling_strategy='holdout-iterative-fit')
11301105

11311106
if as_frame:
1132-
with ignore_warnings():
1133-
# Let autosklearn calculate the feat types
1134-
automl_fitted = automl.fit(X, y)
1107+
# Let autosklearn calculate the feat types
1108+
automl_fitted = automl.fit(X, y)
11351109

11361110
else:
11371111
X_, y_ = sklearn.datasets.fetch_openml(data_id=2, return_X_y=True, as_frame=True)
11381112
feat_type = ['categorical' if X_[col].dtype.name == 'category' else 'numerical'
11391113
for col in X_.columns]
11401114

1141-
with ignore_warnings():
1142-
automl_fitted = automl.fit(X, y, feat_type=feat_type)
1115+
automl_fitted = automl.fit(X, y, feat_type=feat_type)
11431116

11441117
assert automl is automl_fitted
11451118

0 commit comments

Comments
 (0)