Skip to content

Commit 0b37b9a

Browse files
author
Github Actions
committed
Eddie Bergman: Update isort-check.yaml to remove occurences of black (#1342)
1 parent 07f669e commit 0b37b9a

File tree

69 files changed

+1645
-1421
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

69 files changed

+1645
-1421
lines changed
Binary file not shown.
Binary file not shown.
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading

development/_sources/examples/20_basic/example_classification.rst.txt

Lines changed: 55 additions & 55 deletions
Large diffs are not rendered by default.

development/_sources/examples/20_basic/example_multilabel_classification.rst.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -154,7 +154,7 @@ View the models found by auto-sklearn
154154
155155
rank ensemble_weight type cost duration
156156
model_id
157-
2 1 1.0 random_forest 0.447294 3.722532
157+
2 1 1.0 random_forest 0.447294 3.259168
158158
159159
160160
@@ -262,7 +262,7 @@ Get the Score of the final ensemble
262262
263263
.. rst-class:: sphx-glr-timing
264264

265-
**Total running time of the script:** ( 0 minutes 17.564 seconds)
265+
**Total running time of the script:** ( 0 minutes 14.171 seconds)
266266

267267

268268
.. _sphx_glr_download_examples_20_basic_example_multilabel_classification.py:

development/_sources/examples/20_basic/example_multioutput_regression.rst.txt

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -124,7 +124,7 @@ View the models found by auto-sklearn
124124
125125
rank ensemble_weight type cost duration
126126
model_id
127-
20 1 1.0 gaussian_process 2.198749e-08 4.786565
127+
11 1 1.0 gaussian_process 4.436846e-10 9.897039
128128
129129
130130
@@ -151,7 +151,7 @@ Print the final ensemble constructed by auto-sklearn
151151

152152
.. code-block:: none
153153
154-
[(1.000000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_regression', 'regressor:__choice__': 'gaussian_process', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:extra_trees_preproc_for_regression:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_regression:criterion': 'mae', 'feature_preprocessor:extra_trees_preproc_for_regression:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_regression:max_features': 0.5166678376035129, 'feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf': 1, 'feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split': 9, 'feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_regression:n_estimators': 100, 'regressor:gaussian_process:alpha': 4.2478708206859043e-10, 'regressor:gaussian_process:thetaL': 1.158691069519535e-05, 'regressor:gaussian_process:thetaU': 1167.1248238015862, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01017601832778754},
154+
[(1.000000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'regressor:__choice__': 'gaussian_process', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'regressor:gaussian_process:alpha': 1.6650724498551164e-11, 'regressor:gaussian_process:thetaL': 5.222627524598125e-10, 'regressor:gaussian_process:thetaU': 5801.524168449955, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0809214996879808, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.9020530113478731, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.10288728233229412},
155155
dataset_properties={
156156
'task': 5,
157157
'sparse': False,
@@ -186,7 +186,7 @@ Get the Score of the final ensemble
186186

187187
.. code-block:: none
188188
189-
R2 score: 0.9999999937620259
189+
R2 score: 0.9999999995269687
190190
191191
192192
@@ -409,7 +409,7 @@ Get the configuration space
409409
410410
.. rst-class:: sphx-glr-timing
411411

412-
**Total running time of the script:** ( 2 minutes 1.233 seconds)
412+
**Total running time of the script:** ( 1 minutes 54.019 seconds)
413413

414414

415415
.. _sphx_glr_download_examples_20_basic_example_multioutput_regression.py:

development/_sources/examples/20_basic/example_regression.rst.txt

Lines changed: 13 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -119,13 +119,12 @@ View the models found by auto-sklearn
119119

120120
.. code-block:: none
121121
122-
rank ensemble_weight type cost duration
123-
model_id
124-
25 1 0.46 sgd 0.436679 0.732215
125-
6 2 0.32 ard_regression 0.455042 0.723179
126-
27 3 0.14 ard_regression 0.462249 0.728957
127-
11 4 0.02 random_forest 0.507400 10.798643
128-
7 5 0.06 gradient_boosting 0.518673 1.353502
122+
rank ensemble_weight type cost duration
123+
model_id
124+
25 1 0.44 sgd 0.436679 0.602655
125+
6 2 0.34 ard_regression 0.455042 0.617590
126+
39 3 0.18 ard_regression 0.474807 0.600889
127+
7 4 0.04 gradient_boosting 0.518673 1.082535
129128
130129
131130
@@ -152,35 +151,28 @@ Print the final ensemble constructed by auto-sklearn
152151

153152
.. code-block:: none
154153
155-
[(0.460000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'regressor:__choice__': 'sgd', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:polynomial:degree': 3, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False', 'regressor:sgd:alpha': 0.0006517033225329654, 'regressor:sgd:average': 'False', 'regressor:sgd:fit_intercept': 'True', 'regressor:sgd:learning_rate': 'invscaling', 'regressor:sgd:loss': 'epsilon_insensitive', 'regressor:sgd:penalty': 'elasticnet', 'regressor:sgd:tol': 0.002431731981071206, 'regressor:sgd:epsilon': 0.012150149892783745, 'regressor:sgd:eta0': 0.016444224834275295, 'regressor:sgd:l1_ratio': 1.7462342366289323e-09, 'regressor:sgd:power_t': 0.21521743568582094},
154+
[(0.440000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'regressor:__choice__': 'sgd', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:polynomial:degree': 3, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False', 'regressor:sgd:alpha': 0.0006517033225329654, 'regressor:sgd:average': 'False', 'regressor:sgd:fit_intercept': 'True', 'regressor:sgd:learning_rate': 'invscaling', 'regressor:sgd:loss': 'epsilon_insensitive', 'regressor:sgd:penalty': 'elasticnet', 'regressor:sgd:tol': 0.002431731981071206, 'regressor:sgd:epsilon': 0.012150149892783745, 'regressor:sgd:eta0': 0.016444224834275295, 'regressor:sgd:l1_ratio': 1.7462342366289323e-09, 'regressor:sgd:power_t': 0.21521743568582094},
156155
dataset_properties={
157156
'task': 4,
158157
'sparse': False,
159158
'multioutput': False,
160159
'target_type': 'regression',
161160
'signed': False})),
162-
(0.320000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'regressor:__choice__': 'ard_regression', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'False', 'regressor:ard_regression:alpha_1': 0.0003701926442639788, 'regressor:ard_regression:alpha_2': 2.2118001735899097e-07, 'regressor:ard_regression:fit_intercept': 'True', 'regressor:ard_regression:lambda_1': 1.2037591637980971e-06, 'regressor:ard_regression:lambda_2': 4.358378124977852e-09, 'regressor:ard_regression:n_iter': 300, 'regressor:ard_regression:threshold_lambda': 1136.5286041327277, 'regressor:ard_regression:tol': 0.021944240404849075},
161+
(0.340000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'regressor:__choice__': 'ard_regression', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'False', 'regressor:ard_regression:alpha_1': 0.0003701926442639788, 'regressor:ard_regression:alpha_2': 2.2118001735899097e-07, 'regressor:ard_regression:fit_intercept': 'True', 'regressor:ard_regression:lambda_1': 1.2037591637980971e-06, 'regressor:ard_regression:lambda_2': 4.358378124977852e-09, 'regressor:ard_regression:n_iter': 300, 'regressor:ard_regression:threshold_lambda': 1136.5286041327277, 'regressor:ard_regression:tol': 0.021944240404849075},
163162
dataset_properties={
164163
'task': 4,
165164
'sparse': False,
166165
'multioutput': False,
167166
'target_type': 'regression',
168167
'signed': False})),
169-
(0.140000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_rates_regression', 'regressor:__choice__': 'ard_regression', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:select_rates_regression:alpha': 0.3621762718897781, 'feature_preprocessor:select_rates_regression:mode': 'fwe', 'feature_preprocessor:select_rates_regression:score_func': 'f_regression', 'regressor:ard_regression:alpha_1': 2.7664515192592053e-05, 'regressor:ard_regression:alpha_2': 9.504988116581138e-07, 'regressor:ard_regression:fit_intercept': 'True', 'regressor:ard_regression:lambda_1': 6.50650698230178e-09, 'regressor:ard_regression:lambda_2': 4.238533890074848e-07, 'regressor:ard_regression:n_iter': 300, 'regressor:ard_regression:threshold_lambda': 78251.58542976103, 'regressor:ard_regression:tol': 0.0007301343236220855, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0001745391328519669, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8057830372269097, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.24982831110057324},
168+
(0.180000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'fast_ica', 'regressor:__choice__': 'ard_regression', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:fast_ica:algorithm': 'parallel', 'feature_preprocessor:fast_ica:fun': 'logcosh', 'feature_preprocessor:fast_ica:whiten': 'False', 'regressor:ard_regression:alpha_1': 0.0005012365297609799, 'regressor:ard_regression:alpha_2': 3.025360750168211e-08, 'regressor:ard_regression:fit_intercept': 'True', 'regressor:ard_regression:lambda_1': 4.9749646614525684e-05, 'regressor:ard_regression:lambda_2': 3.2368037115065363e-10, 'regressor:ard_regression:n_iter': 300, 'regressor:ard_regression:threshold_lambda': 18669.665899307194, 'regressor:ard_regression:tol': 0.0012624032013298571},
170169
dataset_properties={
171170
'task': 4,
172171
'sparse': False,
173172
'multioutput': False,
174173
'target_type': 'regression',
175174
'signed': False})),
176-
(0.060000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'regressor:__choice__': 'gradient_boosting', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'regressor:gradient_boosting:early_stop': 'off', 'regressor:gradient_boosting:l2_regularization': 1.8428972335335263e-10, 'regressor:gradient_boosting:learning_rate': 0.012607824914758717, 'regressor:gradient_boosting:loss': 'least_squares', 'regressor:gradient_boosting:max_bins': 255, 'regressor:gradient_boosting:max_depth': 'None', 'regressor:gradient_boosting:max_leaf_nodes': 10, 'regressor:gradient_boosting:min_samples_leaf': 8, 'regressor:gradient_boosting:scoring': 'loss', 'regressor:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 952, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'},
177-
dataset_properties={
178-
'task': 4,
179-
'sparse': False,
180-
'multioutput': False,
181-
'target_type': 'regression',
182-
'signed': False})),
183-
(0.020000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'regressor:__choice__': 'random_forest', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'True', 'regressor:random_forest:bootstrap': 'False', 'regressor:random_forest:criterion': 'mae', 'regressor:random_forest:max_depth': 'None', 'regressor:random_forest:max_features': 0.6277363920171745, 'regressor:random_forest:max_leaf_nodes': 'None', 'regressor:random_forest:min_impurity_decrease': 0.0, 'regressor:random_forest:min_samples_leaf': 6, 'regressor:random_forest:min_samples_split': 15, 'regressor:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0010413452644415357},
175+
(0.040000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'regressor:__choice__': 'gradient_boosting', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'regressor:gradient_boosting:early_stop': 'off', 'regressor:gradient_boosting:l2_regularization': 1.8428972335335263e-10, 'regressor:gradient_boosting:learning_rate': 0.012607824914758717, 'regressor:gradient_boosting:loss': 'least_squares', 'regressor:gradient_boosting:max_bins': 255, 'regressor:gradient_boosting:max_depth': 'None', 'regressor:gradient_boosting:max_leaf_nodes': 10, 'regressor:gradient_boosting:min_samples_leaf': 8, 'regressor:gradient_boosting:scoring': 'loss', 'regressor:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 952, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'},
184176
dataset_properties={
185177
'task': 4,
186178
'sparse': False,
@@ -221,8 +213,8 @@ predicting the data mean has an R2 score of 0.
221213

222214
.. code-block:: none
223215
224-
Train R2 score: 0.5944780427522034
225-
Test R2 score: 0.3959585042866587
216+
Train R2 score: 0.5855373845454157
217+
Test R2 score: 0.39879073225079487
226218
227219
228220
@@ -267,7 +259,7 @@ the true value).
267259

268260
.. rst-class:: sphx-glr-timing
269261

270-
**Total running time of the script:** ( 2 minutes 0.468 seconds)
262+
**Total running time of the script:** ( 1 minutes 58.004 seconds)
271263

272264

273265
.. _sphx_glr_download_examples_20_basic_example_regression.py:

0 commit comments

Comments
 (0)