Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Handling Input to auto pytorch #89

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 45 additions & 38 deletions autoPyTorch/api/base_task.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
import time
import typing
import unittest.mock
import uuid
import warnings
from abc import abstractmethod
from typing import Any, Callable, Dict, List, Optional, Union, cast
Expand Down Expand Up @@ -122,21 +123,24 @@ class BaseTask:
"""

def __init__(
self,
seed: int = 1,
n_jobs: int = 1,
logging_config: Optional[Dict] = None,
ensemble_size: int = 50,
ensemble_nbest: int = 50,
max_models_on_disc: int = 50,
temporary_directory: Optional[str] = None,
output_directory: Optional[str] = None,
delete_tmp_folder_after_terminate: bool = True,
delete_output_folder_after_terminate: bool = True,
include_components: Optional[Dict] = None,
exclude_components: Optional[Dict] = None,
backend: Optional[Backend] = None,
search_space_updates: Optional[HyperparameterSearchSpaceUpdates] = None
self,
seed: int = 1,
n_jobs: int = 1,
logging_config: Optional[Dict] = None,
ensemble_size: int = 50,
ensemble_nbest: int = 50,
max_models_on_disc: int = 50,
temporary_directory: Optional[str] = None,
output_directory: Optional[str] = None,
delete_tmp_folder_after_terminate: bool = True,
delete_output_folder_after_terminate: bool = True,
include_components: Optional[Dict] = None,
exclude_components: Optional[Dict] = None,
backend: Optional[Backend] = None,
resampling_strategy: Union[CrossValTypes, HoldoutValTypes] = HoldoutValTypes.holdout_validation,
resampling_strategy_args: Optional[Dict[str, Any]] = None,
search_space_updates: Optional[HyperparameterSearchSpaceUpdates] = None,
task_type: Optional[str] = None
) -> None:
self.seed = seed
self.n_jobs = n_jobs
Expand All @@ -157,14 +161,14 @@ def __init__(
delete_tmp_folder_after_terminate=delete_tmp_folder_after_terminate,
delete_output_folder_after_terminate=delete_output_folder_after_terminate,
)
self.task_type = task_type
self._stopwatch = StopWatch()

self.pipeline_options = replace_string_bool_to_bool(json.load(open(
os.path.join(os.path.dirname(__file__), '../configs/default_pipeline_options.json'))))

self.search_space: Optional[ConfigurationSpace] = None
self._dataset_requirements: Optional[List[FitRequirement]] = None
self.task_type: Optional[str] = None
self._metric: Optional[autoPyTorchMetric] = None
self._logger: Optional[PicklableClientLogger] = None
self.run_history: Optional[RunHistory] = None
Expand All @@ -176,7 +180,8 @@ def __init__(
self._logger_port = logging.handlers.DEFAULT_TCP_LOGGING_PORT

# Store the resampling strategy from the dataset, to load models as needed
self.resampling_strategy = None # type: Optional[Union[CrossValTypes, HoldoutValTypes]]
self.resampling_strategy = resampling_strategy
self.resampling_strategy_args = resampling_strategy_args

self.stop_logging_server = None # type: Optional[multiprocessing.synchronize.Event]

Expand Down Expand Up @@ -287,7 +292,7 @@ def _get_logger(self, name: str) -> PicklableClientLogger:
output_dir=self._backend.temporary_directory,
)

# As Auto-sklearn works with distributed process,
# As AutoPyTorch works with distributed process,
# we implement a logger server that can receive tcp
# pickled messages. They are unpickled and processed locally
# under the above logging configuration setting
Expand Down Expand Up @@ -398,20 +403,16 @@ def _close_dask_client(self) -> None:
self._is_dask_client_internally_created = False
del self._is_dask_client_internally_created

def _load_models(self, resampling_strategy: Optional[Union[CrossValTypes, HoldoutValTypes]]
) -> bool:
def _load_models(self) -> bool:

"""
Loads the models saved in the temporary directory
during the smac run and the final ensemble created
Args:
resampling_strategy (Union[CrossValTypes, HoldoutValTypes]): resampling strategy used to split the data
and to validate the performance of a candidate pipeline

Returns:
None
"""
if resampling_strategy is None:
if self.resampling_strategy is None:
raise ValueError("Resampling strategy is needed to determine what models to load")
self.ensemble_ = self._backend.load_ensemble(self.seed)

Expand All @@ -422,10 +423,10 @@ def _load_models(self, resampling_strategy: Optional[Union[CrossValTypes, Holdou
if self.ensemble_:
identifiers = self.ensemble_.get_selected_model_identifiers()
self.models_ = self._backend.load_models_by_identifiers(identifiers)
if isinstance(resampling_strategy, CrossValTypes):
if isinstance(self.resampling_strategy, CrossValTypes):
self.cv_models_ = self._backend.load_cv_models_by_identifiers(identifiers)

if isinstance(resampling_strategy, CrossValTypes):
if isinstance(self.resampling_strategy, CrossValTypes):
if len(self.cv_models_) == 0:
raise ValueError('No models fitted!')

Expand Down Expand Up @@ -610,10 +611,10 @@ def _do_traditional_prediction(self, num_run: int, time_for_traditional: int) ->
)
return num_run

def search(
def _search(
self,
dataset: BaseDataset,
optimize_metric: str,
dataset: BaseDataset,
budget_type: Optional[str] = None,
budget: Optional[float] = None,
total_walltime_limit: int = 100,
Expand All @@ -638,6 +639,7 @@ def search(
The argument that will provide the dataset splits. It is
a subclass of the base dataset object which can
generate the splits based on different restrictions.
Providing X_train, y_train and dataset together is not supported.
optimize_metric (str): name of the metric that is used to
evaluate a pipeline.
budget_type (Optional[str]):
Expand Down Expand Up @@ -692,6 +694,7 @@ def search(
self

"""

if self.task_type != dataset.task_type:
raise ValueError("Incompatible dataset entered for current task,"
"expected dataset to have task type :{} got "
Expand All @@ -705,8 +708,8 @@ def search(
dataset_properties = dataset.get_dataset_properties(dataset_requirements)
self._stopwatch.start_task(experiment_task_name)
self.dataset_name = dataset.dataset_name
self.resampling_strategy = dataset.resampling_strategy
self._logger = self._get_logger(self.dataset_name)
if self._logger is None:
self._logger = self._get_logger(self.dataset_name)
self._all_supported_metrics = all_supported_metrics
self._disable_file_output = disable_file_output
self._memory_limit = memory_limit
Expand Down Expand Up @@ -869,7 +872,7 @@ def search(

if load_models:
self._logger.info("Loading models...")
self._load_models(dataset.resampling_strategy)
self._load_models()
self._logger.info("Finished loading models...")

# Clean up the logger
Expand Down Expand Up @@ -906,8 +909,11 @@ def refit(
Returns:
self
"""
if self.dataset_name is None:
self.dataset_name = str(uuid.uuid1(clock_seq=os.getpid()))

self._logger = self._get_logger(dataset.dataset_name)
if self._logger is None:
self._logger = self._get_logger(self.dataset_name)

dataset_requirements = get_dataset_requirements(
info=self._get_required_dataset_properties(dataset))
Expand All @@ -927,7 +933,7 @@ def refit(
})
X.update({**self.pipeline_options, **budget_config})
if self.models_ is None or len(self.models_) == 0 or self.ensemble_ is None:
self._load_models(dataset.resampling_strategy)
self._load_models()

# Refit is not applicable when ensemble_size is set to zero.
if self.ensemble_ is None:
Expand Down Expand Up @@ -973,7 +979,11 @@ def fit(self,
Returns:
(BasePipeline): fitted pipeline
"""
self._logger = self._get_logger(dataset.dataset_name)
if self.dataset_name is None:
self.dataset_name = str(uuid.uuid1(clock_seq=os.getpid()))

if self._logger is None:
self._logger = self._get_logger(self.dataset_name)

# get dataset properties
dataset_requirements = get_dataset_requirements(
Expand Down Expand Up @@ -1025,7 +1035,7 @@ def predict(
if self._logger is None:
self._logger = self._get_logger("Predict-Logger")

if self.ensemble_ is None and not self._load_models(self.resampling_strategy):
if self.ensemble_ is None and not self._load_models():
raise ValueError("No ensemble found. Either fit has not yet "
"been called or no ensemble was fitted")

Expand Down Expand Up @@ -1084,9 +1094,6 @@ def score(
Returns:
Dict[str, float]: Value of the evaluation metric calculated on the test set.
"""
if isinstance(y_test, pd.Series):
y_test = y_test.to_numpy(dtype=np.float)

if self._metric is None:
raise ValueError("No metric found. Either fit/search has not been called yet "
"or AutoPyTorch failed to infer a metric from the dataset ")
Expand Down
Loading