@@ -38,7 +38,7 @@ a 67% train size split.
38
38
39
39
.. code-block :: none
40
40
41
- <smac.runhistory.runhistory.RunHistory object at 0x7f93a5e55c40 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
41
+ <smac.runhistory.runhistory.RunHistory object at 0x7f23ad174160 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
42
42
data_loader:batch_size, Value: 64
43
43
encoder:__choice__, Value: 'OneHotEncoder'
44
44
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -77,7 +77,7 @@ a 67% train size split.
77
77
trainer:StandardTrainer:use_stochastic_weight_averaging, Value: True
78
78
trainer:StandardTrainer:weighted_loss, Value: True
79
79
trainer:__choice__, Value: 'StandardTrainer'
80
- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.002051115036010742 , budget=0), TrajEntry(train_perf=0.19298245614035092, incumbent_id=1, incumbent=Configuration:
80
+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0018305778503417969 , budget=0), TrajEntry(train_perf=0.19298245614035092, incumbent_id=1, incumbent=Configuration:
81
81
data_loader:batch_size, Value: 64
82
82
encoder:__choice__, Value: 'OneHotEncoder'
83
83
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -116,18 +116,19 @@ a 67% train size split.
116
116
trainer:StandardTrainer:use_stochastic_weight_averaging, Value: True
117
117
trainer:StandardTrainer:weighted_loss, Value: True
118
118
trainer:__choice__, Value: 'StandardTrainer'
119
- , ta_runs=1, ta_time_used=12.115590572357178 , wallclock_time=13.64609694480896 , budget=5.555555555555555)]
120
- {'accuracy': 0.8728323699421965 }
119
+ , ta_runs=1, ta_time_used=15.317967414855957 , wallclock_time=16.835456609725952 , budget=5.555555555555555)]
120
+ {'accuracy': 0.8670520231213873 }
121
121
| | Preprocessing | Estimator | Weight |
122
122
|---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
123
- | 0 | None | RFClassifier | 0.28 |
124
- | 1 | None | ExtraTreesClassifier | 0.2 |
125
- | 2 | None | CatBoostClassifier | 0.18 |
123
+ | 0 | None | CatBoostClassifier | 0.22 |
124
+ | 1 | None | RFClassifier | 0.22 |
125
+ | 2 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.18 |
126
126
| 3 | None | LGBMClassifier | 0.16 |
127
- | 4 | None | KNNClassifier | 0.12 |
128
- | 5 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
129
- | 6 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone,NoHead,nn.Sequential | 0.02 |
130
- <smac.runhistory.runhistory.RunHistory object at 0x7f93a5d58070> [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
127
+ | 4 | None | ExtraTreesClassifier | 0.12 |
128
+ | 5 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone,NoHead,nn.Sequential | 0.04 |
129
+ | 6 | None | SVC | 0.04 |
130
+ | 7 | None | KNNClassifier | 0.02 |
131
+ <smac.runhistory.runhistory.RunHistory object at 0x7f23ac354130> [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
131
132
data_loader:batch_size, Value: 64
132
133
encoder:__choice__, Value: 'OneHotEncoder'
133
134
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -166,7 +167,7 @@ a 67% train size split.
166
167
trainer:StandardTrainer:use_stochastic_weight_averaging, Value: True
167
168
trainer:StandardTrainer:weighted_loss, Value: True
168
169
trainer:__choice__, Value: 'StandardTrainer'
169
- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0020253658294677734 , budget=0), TrajEntry(train_perf=0.13918253373732403 , incumbent_id=1, incumbent=Configuration:
170
+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.001428365707397461 , budget=0), TrajEntry(train_perf=1.0 , incumbent_id=1, incumbent=Configuration:
170
171
data_loader:batch_size, Value: 64
171
172
encoder:__choice__, Value: 'OneHotEncoder'
172
173
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -205,18 +206,17 @@ a 67% train size split.
205
206
trainer:StandardTrainer:use_stochastic_weight_averaging, Value: True
206
207
trainer:StandardTrainer:weighted_loss, Value: True
207
208
trainer:__choice__, Value: 'StandardTrainer'
208
- , ta_runs=1, ta_time_used=31.310828924179077 , wallclock_time=32.82950496673584 , budget=5.555555555555555)]
209
+ , ta_runs=1, ta_time_used=32.74102234840393 , wallclock_time=34.25397086143494 , budget=5.555555555555555)]
209
210
{'accuracy': 0.8728323699421965}
210
- | | Preprocessing | Estimator | Weight |
211
- |---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
212
- | 0 | None | TabularClassifier | 0.28 |
213
- | 1 | None | TabularClassifier | 0.18 |
214
- | 2 | None | TabularClassifier | 0.16 |
215
- | 3 | None | TabularClassifier | 0.12 |
216
- | 4 | None | TabularClassifier | 0.12 |
217
- | 5 | None | TabularClassifier | 0.08 |
218
- | 6 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
219
- <smac.runhistory.runhistory.RunHistory object at 0x7f93a46b2700> [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
211
+ | | Preprocessing | Estimator | Weight |
212
+ |---:|:----------------|:------------------|---------:|
213
+ | 0 | None | TabularClassifier | 0.24 |
214
+ | 1 | None | TabularClassifier | 0.24 |
215
+ | 2 | None | TabularClassifier | 0.18 |
216
+ | 3 | None | TabularClassifier | 0.16 |
217
+ | 4 | None | TabularClassifier | 0.12 |
218
+ | 5 | None | TabularClassifier | 0.06 |
219
+ <smac.runhistory.runhistory.RunHistory object at 0x7f23ad1d7370> [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
220
220
data_loader:batch_size, Value: 64
221
221
encoder:__choice__, Value: 'OneHotEncoder'
222
222
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -255,7 +255,7 @@ a 67% train size split.
255
255
trainer:StandardTrainer:use_stochastic_weight_averaging, Value: True
256
256
trainer:StandardTrainer:weighted_loss, Value: True
257
257
trainer:__choice__, Value: 'StandardTrainer'
258
- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0019996166229248047 , budget=0), TrajEntry(train_perf=0.16959064327485385, incumbent_id=1, incumbent=Configuration:
258
+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0017085075378417969 , budget=0), TrajEntry(train_perf=0.16959064327485385, incumbent_id=1, incumbent=Configuration:
259
259
data_loader:batch_size, Value: 64
260
260
encoder:__choice__, Value: 'OneHotEncoder'
261
261
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -294,15 +294,15 @@ a 67% train size split.
294
294
trainer:StandardTrainer:use_stochastic_weight_averaging, Value: True
295
295
trainer:StandardTrainer:weighted_loss, Value: True
296
296
trainer:__choice__, Value: 'StandardTrainer'
297
- , ta_runs=1, ta_time_used=12.241821527481079 , wallclock_time=13.771500825881958 , budget=5.555555555555555)]
297
+ , ta_runs=1, ta_time_used=15.288289785385132 , wallclock_time=16.83263635635376 , budget=5.555555555555555)]
298
298
{'accuracy': 0.884393063583815}
299
299
| | Preprocessing | Estimator | Weight |
300
300
|---:|:---------------------------------------------------|:-------------------------------------------------------|---------:|
301
- | 0 | None | CatBoostClassifier | 0.66 |
301
+ | 0 | None | CatBoostClassifier | 0.64 |
302
302
| 1 | None | ExtraTreesClassifier | 0.14 |
303
- | 2 | None | LGBMClassifier | 0.08 |
304
- | 3 | None | RFClassifier | 0.08 |
305
- | 4 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone,NoHead,nn.Sequential | 0.02 |
303
+ | 2 | None | RFClassifier | 0.1 |
304
+ | 3 | None | LGBMClassifier | 0.06 |
305
+ | 4 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone,NoHead,nn.Sequential | 0.04 |
306
306
| 5 | None | SVC | 0.02 |
307
307
308
308
@@ -467,7 +467,7 @@ a 67% train size split.
467
467
468
468
.. rst-class :: sphx-glr-timing
469
469
470
- **Total running time of the script: ** ( 10 minutes 2.984 seconds)
470
+ **Total running time of the script: ** ( 10 minutes 14.183 seconds)
471
471
472
472
473
473
.. _sphx_glr_download_advanced_tabular_example_resampling_strategy.py :
0 commit comments