@@ -134,7 +134,7 @@ Search for an ensemble of machine learning algorithms
134134 .. code-block :: none
135135
136136
137- <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f444a4d0d90 >
137+ <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7fdd8a34d640 >
138138
139139
140140
@@ -168,22 +168,25 @@ Print the final ensemble performance
168168 {'accuracy': 0.861271676300578}
169169 | | Preprocessing | Estimator | Weight |
170170 |---:|:-------------------------------------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
171- | 0 | None | CBLearner | 0.66 |
172- | 1 | SimpleImputer,Variance Threshold,NoCoalescer,NoEncoder,StandardScaler,TruncSVD | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
173- | 2 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,StandardScaler,KernelPCA | embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
174- | 3 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,Normalizer,Nystroem | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
175- | 4 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,Normalizer,TruncSVD | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
176- | 5 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,StandardScaler,KernelPCA | embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
177- | 6 | None | RFLearner | 0.02 |
178- | 7 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
171+ | 0 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,QuantileTransformer,KitchenSink | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.24 |
172+ | 1 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
173+ | 2 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,NoScaler,KitchenSink | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
174+ | 3 | None | CBLearner | 0.1 |
175+ | 4 | None | SVMLearner | 0.08 |
176+ | 5 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,NoScaler,KitchenSink | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
177+ | 6 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,NoScaler,KitchenSink | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
178+ | 7 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,SRC | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
179+ | 8 | None | LGBMLearner | 0.04 |
180+ | 9 | None | RFLearner | 0.04 |
181+ | 10 | None | KNNLearner | 0.04 |
179182 autoPyTorch results:
180183 Dataset name: Australian
181184 Optimisation Metric: accuracy
182185 Best validation score: 0.8713450292397661
183- Number of target algorithm runs: 23
184- Number of successful target algorithm runs: 20
185- Number of crashed target algorithm runs: 2
186- Number of target algorithms that exceeded the time limit: 1
186+ Number of target algorithm runs: 20
187+ Number of successful target algorithm runs: 18
188+ Number of crashed target algorithm runs: 0
189+ Number of target algorithms that exceeded the time limit: 2
187190 Number of target algorithms that exceeded the memory limit: 0
188191
189192
@@ -193,7 +196,7 @@ Print the final ensemble performance
193196
194197 .. rst-class :: sphx-glr-timing
195198
196- **Total running time of the script: ** ( 5 minutes 31.215 seconds)
199+ **Total running time of the script: ** ( 5 minutes 27.922 seconds)
197200
198201
199202.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py :
0 commit comments