@@ -134,7 +134,7 @@ Search for an ensemble of machine learning algorithms
134
134
.. code-block :: none
135
135
136
136
137
- <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f444a4d0d90 >
137
+ <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7fdd8a34d640 >
138
138
139
139
140
140
@@ -168,22 +168,25 @@ Print the final ensemble performance
168
168
{'accuracy': 0.861271676300578}
169
169
| | Preprocessing | Estimator | Weight |
170
170
|---:|:-------------------------------------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
171
- | 0 | None | CBLearner | 0.66 |
172
- | 1 | SimpleImputer,Variance Threshold,NoCoalescer,NoEncoder,StandardScaler,TruncSVD | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
173
- | 2 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,StandardScaler,KernelPCA | embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
174
- | 3 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,Normalizer,Nystroem | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
175
- | 4 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,Normalizer,TruncSVD | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
176
- | 5 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,StandardScaler,KernelPCA | embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
177
- | 6 | None | RFLearner | 0.02 |
178
- | 7 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
171
+ | 0 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,QuantileTransformer,KitchenSink | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.24 |
172
+ | 1 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
173
+ | 2 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,NoScaler,KitchenSink | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
174
+ | 3 | None | CBLearner | 0.1 |
175
+ | 4 | None | SVMLearner | 0.08 |
176
+ | 5 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,NoScaler,KitchenSink | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
177
+ | 6 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,NoScaler,KitchenSink | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
178
+ | 7 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,SRC | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
179
+ | 8 | None | LGBMLearner | 0.04 |
180
+ | 9 | None | RFLearner | 0.04 |
181
+ | 10 | None | KNNLearner | 0.04 |
179
182
autoPyTorch results:
180
183
Dataset name: Australian
181
184
Optimisation Metric: accuracy
182
185
Best validation score: 0.8713450292397661
183
- Number of target algorithm runs: 23
184
- Number of successful target algorithm runs: 20
185
- Number of crashed target algorithm runs: 2
186
- Number of target algorithms that exceeded the time limit: 1
186
+ Number of target algorithm runs: 20
187
+ Number of successful target algorithm runs: 18
188
+ Number of crashed target algorithm runs: 0
189
+ Number of target algorithms that exceeded the time limit: 2
187
190
Number of target algorithms that exceeded the memory limit: 0
188
191
189
192
@@ -193,7 +196,7 @@ Print the final ensemble performance
193
196
194
197
.. rst-class :: sphx-glr-timing
195
198
196
- **Total running time of the script: ** ( 5 minutes 31.215 seconds)
199
+ **Total running time of the script: ** ( 5 minutes 27.922 seconds)
197
200
198
201
199
202
.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py :
0 commit comments