@@ -36,7 +36,7 @@ with AutoPyTorch
3636
3737 .. code-block :: none
3838
39- <smac.runhistory.runhistory.RunHistory object at 0x7f749966b6a0 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
39+ <smac.runhistory.runhistory.RunHistory object at 0x7f7fcd09e700 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
4040 data_loader:batch_size, Value: 64
4141 encoder:__choice__, Value: 'OneHotEncoder'
4242 feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -68,7 +68,7 @@ with AutoPyTorch
6868 scaler:__choice__, Value: 'StandardScaler'
6969 trainer:StandardTrainer:weighted_loss, Value: True
7070 trainer:__choice__, Value: 'StandardTrainer'
71- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.002102375030517578 , budget=0), TrajEntry(train_perf=0.17543859649122806, incumbent_id=1, incumbent=Configuration:
71+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.001974344253540039 , budget=0), TrajEntry(train_perf=0.17543859649122806, incumbent_id=1, incumbent=Configuration:
7272 data_loader:batch_size, Value: 64
7373 encoder:__choice__, Value: 'OneHotEncoder'
7474 feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -100,7 +100,7 @@ with AutoPyTorch
100100 scaler:__choice__, Value: 'StandardScaler'
101101 trainer:StandardTrainer:weighted_loss, Value: True
102102 trainer:__choice__, Value: 'StandardTrainer'
103- , ta_runs=1, ta_time_used=5.201563596725464 , wallclock_time=6.676171779632568 , budget=5.555555555555555), TrajEntry(train_perf=0.14035087719298245 , incumbent_id=2, incumbent=Configuration:
103+ , ta_runs=1, ta_time_used=5.617596387863159 , wallclock_time=7.137464761734009 , budget=5.555555555555555), TrajEntry(train_perf=0.16374269005847952 , incumbent_id=2, incumbent=Configuration:
104104 data_loader:batch_size, Value: 153
105105 encoder:__choice__, Value: 'OneHotEncoder'
106106 feature_preprocessor:KernelPCA:gamma, Value: 0.6217858094449208
@@ -133,21 +133,19 @@ with AutoPyTorch
133133 trainer:MixUpTrainer:alpha, Value: 0.7490557199071863
134134 trainer:MixUpTrainer:weighted_loss, Value: False
135135 trainer:__choice__, Value: 'MixUpTrainer'
136- , ta_runs=4, ta_time_used=50.87985134124756, wallclock_time=58.71370840072632, budget=5.555555555555555)]
137- {'accuracy': 0.8786127167630058}
138- | | Preprocessing | Estimator | Weight |
139- |---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
140- | 0 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.24 |
141- | 1 | None | CatBoostClassifier | 0.18 |
142- | 2 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
143- | 3 | None | KNNClassifier | 0.1 |
144- | 4 | SimpleImputer,NoEncoder,NoScaler,PolynomialFeatures | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
145- | 5 | None | ExtraTreesClassifier | 0.08 |
146- | 6 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
147- | 7 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
148- | 8 | SimpleImputer,OneHotEncoder,MinMaxScaler,PolynomialFeatures | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
149- | 9 | SimpleImputer,NoEncoder,NoScaler,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
150- | 10 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
136+ , ta_runs=4, ta_time_used=49.19730734825134, wallclock_time=57.43541860580444, budget=5.555555555555555)]
137+ {'accuracy': 0.8728323699421965}
138+ | | Preprocessing | Estimator | Weight |
139+ |---:|:-----------------------------------------------------|:----------------------------------------------------------------|---------:|
140+ | 0 | None | CatBoostClassifier | 0.36 |
141+ | 1 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
142+ | 2 | None | RFClassifier | 0.1 |
143+ | 3 | None | ExtraTreesClassifier | 0.1 |
144+ | 4 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
145+ | 5 | SimpleImputer,NoEncoder,NoScaler,PolynomialFeatures | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
146+ | 6 | None | SVC | 0.06 |
147+ | 7 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
148+ | 8 | None | KNNClassifier | 0.04 |
151149
152150
153151
@@ -225,7 +223,7 @@ with AutoPyTorch
225223
226224 .. rst-class :: sphx-glr-timing
227225
228- **Total running time of the script: ** ( 6 minutes 3.800 seconds)
226+ **Total running time of the script: ** ( 6 minutes 5.257 seconds)
229227
230228
231229.. _sphx_glr_download_basics_tabular_example_tabular_classification.py :
0 commit comments