@@ -36,7 +36,7 @@ with AutoPyTorch
36
36
37
37
.. code-block :: none
38
38
39
- <smac.runhistory.runhistory.RunHistory object at 0x7f749966b6a0 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
39
+ <smac.runhistory.runhistory.RunHistory object at 0x7f7fcd09e700 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
40
40
data_loader:batch_size, Value: 64
41
41
encoder:__choice__, Value: 'OneHotEncoder'
42
42
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -68,7 +68,7 @@ with AutoPyTorch
68
68
scaler:__choice__, Value: 'StandardScaler'
69
69
trainer:StandardTrainer:weighted_loss, Value: True
70
70
trainer:__choice__, Value: 'StandardTrainer'
71
- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.002102375030517578 , budget=0), TrajEntry(train_perf=0.17543859649122806, incumbent_id=1, incumbent=Configuration:
71
+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.001974344253540039 , budget=0), TrajEntry(train_perf=0.17543859649122806, incumbent_id=1, incumbent=Configuration:
72
72
data_loader:batch_size, Value: 64
73
73
encoder:__choice__, Value: 'OneHotEncoder'
74
74
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -100,7 +100,7 @@ with AutoPyTorch
100
100
scaler:__choice__, Value: 'StandardScaler'
101
101
trainer:StandardTrainer:weighted_loss, Value: True
102
102
trainer:__choice__, Value: 'StandardTrainer'
103
- , ta_runs=1, ta_time_used=5.201563596725464 , wallclock_time=6.676171779632568 , budget=5.555555555555555), TrajEntry(train_perf=0.14035087719298245 , incumbent_id=2, incumbent=Configuration:
103
+ , ta_runs=1, ta_time_used=5.617596387863159 , wallclock_time=7.137464761734009 , budget=5.555555555555555), TrajEntry(train_perf=0.16374269005847952 , incumbent_id=2, incumbent=Configuration:
104
104
data_loader:batch_size, Value: 153
105
105
encoder:__choice__, Value: 'OneHotEncoder'
106
106
feature_preprocessor:KernelPCA:gamma, Value: 0.6217858094449208
@@ -133,21 +133,19 @@ with AutoPyTorch
133
133
trainer:MixUpTrainer:alpha, Value: 0.7490557199071863
134
134
trainer:MixUpTrainer:weighted_loss, Value: False
135
135
trainer:__choice__, Value: 'MixUpTrainer'
136
- , ta_runs=4, ta_time_used=50.87985134124756, wallclock_time=58.71370840072632, budget=5.555555555555555)]
137
- {'accuracy': 0.8786127167630058}
138
- | | Preprocessing | Estimator | Weight |
139
- |---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
140
- | 0 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.24 |
141
- | 1 | None | CatBoostClassifier | 0.18 |
142
- | 2 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
143
- | 3 | None | KNNClassifier | 0.1 |
144
- | 4 | SimpleImputer,NoEncoder,NoScaler,PolynomialFeatures | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
145
- | 5 | None | ExtraTreesClassifier | 0.08 |
146
- | 6 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
147
- | 7 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
148
- | 8 | SimpleImputer,OneHotEncoder,MinMaxScaler,PolynomialFeatures | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
149
- | 9 | SimpleImputer,NoEncoder,NoScaler,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
150
- | 10 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
136
+ , ta_runs=4, ta_time_used=49.19730734825134, wallclock_time=57.43541860580444, budget=5.555555555555555)]
137
+ {'accuracy': 0.8728323699421965}
138
+ | | Preprocessing | Estimator | Weight |
139
+ |---:|:-----------------------------------------------------|:----------------------------------------------------------------|---------:|
140
+ | 0 | None | CatBoostClassifier | 0.36 |
141
+ | 1 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
142
+ | 2 | None | RFClassifier | 0.1 |
143
+ | 3 | None | ExtraTreesClassifier | 0.1 |
144
+ | 4 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
145
+ | 5 | SimpleImputer,NoEncoder,NoScaler,PolynomialFeatures | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
146
+ | 6 | None | SVC | 0.06 |
147
+ | 7 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
148
+ | 8 | None | KNNClassifier | 0.04 |
151
149
152
150
153
151
@@ -225,7 +223,7 @@ with AutoPyTorch
225
223
226
224
.. rst-class :: sphx-glr-timing
227
225
228
- **Total running time of the script: ** ( 6 minutes 3.800 seconds)
226
+ **Total running time of the script: ** ( 6 minutes 5.257 seconds)
229
227
230
228
231
229
.. _sphx_glr_download_basics_tabular_example_tabular_classification.py :
0 commit comments