@@ -163,7 +163,7 @@ Search for an ensemble of machine learning algorithms
163
163
.. code-block :: none
164
164
165
165
166
- <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f7e22069580 >
166
+ <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f4449514820 >
167
167
168
168
169
169
@@ -194,24 +194,27 @@ Print the final ensemble performance
194
194
195
195
.. code-block :: none
196
196
197
- {'accuracy': 0.8497109826589595 }
197
+ {'accuracy': 0.838150289017341 }
198
198
| | Preprocessing | Estimator | Weight |
199
199
|---:|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------|---------:|
200
- | 0 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,MinMaxScaler,PolynomialFeatures | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.56 |
201
- | 1 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,RobustScaler,KitchenSink | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
202
- | 2 | None | RFLearner | 0.08 |
203
- | 3 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,PowerTransformer,Nystroem | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
204
- | 4 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,MinMaxScaler,TruncSVD | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
205
- | 5 | None | ETLearner | 0.04 |
206
- | 6 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,QuantileTransformer,KitchenSink | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
207
- | 7 | None | LGBMLearner | 0.02 |
208
- | 8 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
200
+ | 0 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,MinMaxScaler,PolynomialFeatures | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.2 |
201
+ | 1 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,PowerTransformer,Nystroem | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
202
+ | 2 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,RobustScaler,KitchenSink | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
203
+ | 3 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,MinMaxScaler,TruncSVD | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
204
+ | 4 | None | RFLearner | 0.1 |
205
+ | 5 | None | SVMLearner | 0.1 |
206
+ | 6 | None | ETLearner | 0.06 |
207
+ | 7 | None | LGBMLearner | 0.04 |
208
+ | 8 | None | KNNLearner | 0.04 |
209
+ | 9 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
210
+ | 10 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,NoScaler,PolynomialFeatures | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
211
+ | 11 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
209
212
autoPyTorch results:
210
- Dataset name: d0cbe6ed-964f -11ec-87e7-95e9f01c72a4
213
+ Dataset name: ebc28c6f-9a73 -11ec-87d5-474e93987d34
211
214
Optimisation Metric: accuracy
212
215
Best validation score: 0.8596491228070176
213
- Number of target algorithm runs: 18
214
- Number of successful target algorithm runs: 16
216
+ Number of target algorithm runs: 17
217
+ Number of successful target algorithm runs: 15
215
218
Number of crashed target algorithm runs: 2
216
219
Number of target algorithms that exceeded the time limit: 0
217
220
Number of target algorithms that exceeded the memory limit: 0
@@ -272,7 +275,7 @@ Search for an ensemble of machine learning algorithms
272
275
.. code-block :: none
273
276
274
277
275
- <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f7e218d7b80 >
278
+ <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f444970b6d0 >
276
279
277
280
278
281
@@ -315,13 +318,13 @@ Print the final ensemble performance
315
318
| 7 | SimpleImputer,Variance Threshold,NoCoalescer,NoEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
316
319
| 8 | SimpleImputer,Variance Threshold,NoCoalescer,NoEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
317
320
autoPyTorch results:
318
- Dataset name: 3850871f-9650 -11ec-87e7-95e9f01c72a4
321
+ Dataset name: 533c0306-9a74 -11ec-87d5-474e93987d34
319
322
Optimisation Metric: accuracy
320
323
Best validation score: 0.8596491228070176
321
- Number of target algorithm runs: 19
324
+ Number of target algorithm runs: 18
322
325
Number of successful target algorithm runs: 13
323
326
Number of crashed target algorithm runs: 5
324
- Number of target algorithms that exceeded the time limit: 1
327
+ Number of target algorithms that exceeded the time limit: 0
325
328
Number of target algorithms that exceeded the memory limit: 0
326
329
327
330
@@ -331,7 +334,7 @@ Print the final ensemble performance
331
334
332
335
.. rst-class :: sphx-glr-timing
333
336
334
- **Total running time of the script: ** ( 5 minutes 39.929 seconds)
337
+ **Total running time of the script: ** ( 5 minutes 46.242 seconds)
335
338
336
339
337
340
.. _sphx_glr_download_examples_40_advanced_example_custom_configuration_space.py :
0 commit comments