Skip to content

Commit be4dd8f

Browse files
author
Github Actions
committed
nabenabe0928: [refactor] Fix SparseMatrixType --> spmatrix and add ispandas (#397)
1 parent b9cc98b commit be4dd8f

31 files changed

+193
-194
lines changed
Binary file not shown.
Binary file not shown.
Loading
Loading
Loading
Loading

development/_sources/examples/20_basics/example_image_classification.rst.txt

Lines changed: 8 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -85,24 +85,23 @@ Image Classification
8585
Pipeline Random Config:
8686
________________________________________
8787
Configuration(values={
88-
'image_augmenter:GaussianBlur:sigma_min': 2.128854080819082,
89-
'image_augmenter:GaussianBlur:sigma_offset': 1.685286865327408,
90-
'image_augmenter:GaussianBlur:use_augmenter': True,
91-
'image_augmenter:GaussianNoise:use_augmenter': False,
88+
'image_augmenter:GaussianBlur:use_augmenter': False,
89+
'image_augmenter:GaussianNoise:sigma_offset': 2.016605350658349,
90+
'image_augmenter:GaussianNoise:use_augmenter': True,
9291
'image_augmenter:RandomAffine:use_augmenter': False,
93-
'image_augmenter:RandomCutout:p': 0.8505129226214392,
92+
'image_augmenter:RandomCutout:p': 0.7728298341875102,
9493
'image_augmenter:RandomCutout:use_augmenter': True,
9594
'image_augmenter:Resize:use_augmenter': False,
96-
'image_augmenter:ZeroPadAndCrop:percent': 0.3503163793523587,
97-
'normalizer:__choice__': 'NoNormalizer',
95+
'image_augmenter:ZeroPadAndCrop:percent': 0.4990785598329858,
96+
'normalizer:__choice__': 'ImageNormalizer',
9897
})
9998

10099
Fitting the pipeline...
101100
________________________________________
102101
ImageClassificationPipeline
103102
________________________________________
104103
0-) normalizer:
105-
NoNormalizer
104+
ImageNormalizer
106105

107106
1-) preprocessing:
108107
EarlyPreprocessing
@@ -174,7 +173,7 @@ Image Classification
174173
175174
.. rst-class:: sphx-glr-timing
176175

177-
**Total running time of the script:** ( 0 minutes 6.887 seconds)
176+
**Total running time of the script:** ( 0 minutes 8.510 seconds)
178177

179178

180179
.. _sphx_glr_download_examples_20_basics_example_image_classification.py:

development/_sources/examples/20_basics/example_tabular_classification.rst.txt

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -134,7 +134,7 @@ Search for an ensemble of machine learning algorithms
134134
.. code-block:: none
135135
136136
137-
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f7e22bfd7f0>
137+
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f444a4d0d90>
138138
139139
140140
@@ -181,9 +181,9 @@ Print the final ensemble performance
181181
Optimisation Metric: accuracy
182182
Best validation score: 0.8713450292397661
183183
Number of target algorithm runs: 23
184-
Number of successful target algorithm runs: 21
184+
Number of successful target algorithm runs: 20
185185
Number of crashed target algorithm runs: 2
186-
Number of target algorithms that exceeded the time limit: 0
186+
Number of target algorithms that exceeded the time limit: 1
187187
Number of target algorithms that exceeded the memory limit: 0
188188
189189
@@ -193,7 +193,7 @@ Print the final ensemble performance
193193
194194
.. rst-class:: sphx-glr-timing
195195

196-
**Total running time of the script:** ( 5 minutes 28.953 seconds)
196+
**Total running time of the script:** ( 5 minutes 31.215 seconds)
197197

198198

199199
.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py:

development/_sources/examples/20_basics/example_tabular_regression.rst.txt

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -125,7 +125,7 @@ Search for an ensemble of machine learning algorithms
125125
.. code-block:: none
126126
127127
128-
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f7ebdf86d90>
128+
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f44e625f430>
129129
130130
131131
@@ -167,12 +167,12 @@ Print the final ensemble performance
167167
| 2 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
168168
| 3 | None | LGBMLearner | 0.04 |
169169
autoPyTorch results:
170-
Dataset name: 4d60e332-964c-11ec-87e7-95e9f01c72a4
170+
Dataset name: 6c9e9506-9a70-11ec-87d5-474e93987d34
171171
Optimisation Metric: r2
172172
Best validation score: 0.8670098636440993
173-
Number of target algorithm runs: 27
174-
Number of successful target algorithm runs: 25
175-
Number of crashed target algorithm runs: 1
173+
Number of target algorithm runs: 24
174+
Number of successful target algorithm runs: 23
175+
Number of crashed target algorithm runs: 0
176176
Number of target algorithms that exceeded the time limit: 1
177177
Number of target algorithms that exceeded the memory limit: 0
178178
@@ -183,7 +183,7 @@ Print the final ensemble performance
183183
184184
.. rst-class:: sphx-glr-timing
185185

186-
**Total running time of the script:** ( 5 minutes 34.491 seconds)
186+
**Total running time of the script:** ( 5 minutes 33.512 seconds)
187187

188188

189189
.. _sphx_glr_download_examples_20_basics_example_tabular_regression.py:

development/_sources/examples/20_basics/sg_execution_times.rst.txt

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -5,12 +5,12 @@
55

66
Computation times
77
=================
8-
**11:10.330** total execution time for **examples_20_basics** files:
8+
**11:13.237** total execution time for **examples_20_basics** files:
99

1010
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
11-
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:34.491 | 0.0 MB |
11+
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:33.512 | 0.0 MB |
1212
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
13-
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 05:28.953 | 0.0 MB |
13+
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 05:31.215 | 0.0 MB |
1414
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
15-
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:06.887 | 0.0 MB |
15+
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:08.510 | 0.0 MB |
1616
+--------------------------------------------------------------------------------------------------------------+-----------+--------+

development/_sources/examples/40_advanced/example_custom_configuration_space.rst.txt

Lines changed: 22 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -163,7 +163,7 @@ Search for an ensemble of machine learning algorithms
163163
.. code-block:: none
164164
165165
166-
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f7e22069580>
166+
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f4449514820>
167167
168168
169169
@@ -194,24 +194,27 @@ Print the final ensemble performance
194194

195195
.. code-block:: none
196196
197-
{'accuracy': 0.8497109826589595}
197+
{'accuracy': 0.838150289017341}
198198
| | Preprocessing | Estimator | Weight |
199199
|---:|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------|---------:|
200-
| 0 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,MinMaxScaler,PolynomialFeatures | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.56 |
201-
| 1 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,RobustScaler,KitchenSink | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
202-
| 2 | None | RFLearner | 0.08 |
203-
| 3 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,PowerTransformer,Nystroem | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
204-
| 4 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,MinMaxScaler,TruncSVD | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
205-
| 5 | None | ETLearner | 0.04 |
206-
| 6 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,QuantileTransformer,KitchenSink | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
207-
| 7 | None | LGBMLearner | 0.02 |
208-
| 8 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
200+
| 0 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,MinMaxScaler,PolynomialFeatures | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.2 |
201+
| 1 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,PowerTransformer,Nystroem | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
202+
| 2 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,RobustScaler,KitchenSink | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
203+
| 3 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,MinMaxScaler,TruncSVD | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
204+
| 4 | None | RFLearner | 0.1 |
205+
| 5 | None | SVMLearner | 0.1 |
206+
| 6 | None | ETLearner | 0.06 |
207+
| 7 | None | LGBMLearner | 0.04 |
208+
| 8 | None | KNNLearner | 0.04 |
209+
| 9 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
210+
| 10 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,NoScaler,PolynomialFeatures | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
211+
| 11 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
209212
autoPyTorch results:
210-
Dataset name: d0cbe6ed-964f-11ec-87e7-95e9f01c72a4
213+
Dataset name: ebc28c6f-9a73-11ec-87d5-474e93987d34
211214
Optimisation Metric: accuracy
212215
Best validation score: 0.8596491228070176
213-
Number of target algorithm runs: 18
214-
Number of successful target algorithm runs: 16
216+
Number of target algorithm runs: 17
217+
Number of successful target algorithm runs: 15
215218
Number of crashed target algorithm runs: 2
216219
Number of target algorithms that exceeded the time limit: 0
217220
Number of target algorithms that exceeded the memory limit: 0
@@ -272,7 +275,7 @@ Search for an ensemble of machine learning algorithms
272275
.. code-block:: none
273276
274277
275-
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f7e218d7b80>
278+
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f444970b6d0>
276279
277280
278281
@@ -315,13 +318,13 @@ Print the final ensemble performance
315318
| 7 | SimpleImputer,Variance Threshold,NoCoalescer,NoEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
316319
| 8 | SimpleImputer,Variance Threshold,NoCoalescer,NoEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
317320
autoPyTorch results:
318-
Dataset name: 3850871f-9650-11ec-87e7-95e9f01c72a4
321+
Dataset name: 533c0306-9a74-11ec-87d5-474e93987d34
319322
Optimisation Metric: accuracy
320323
Best validation score: 0.8596491228070176
321-
Number of target algorithm runs: 19
324+
Number of target algorithm runs: 18
322325
Number of successful target algorithm runs: 13
323326
Number of crashed target algorithm runs: 5
324-
Number of target algorithms that exceeded the time limit: 1
327+
Number of target algorithms that exceeded the time limit: 0
325328
Number of target algorithms that exceeded the memory limit: 0
326329
327330
@@ -331,7 +334,7 @@ Print the final ensemble performance
331334
332335
.. rst-class:: sphx-glr-timing
333336

334-
**Total running time of the script:** ( 5 minutes 39.929 seconds)
337+
**Total running time of the script:** ( 5 minutes 46.242 seconds)
335338

336339

337340
.. _sphx_glr_download_examples_40_advanced_example_custom_configuration_space.py:

development/_sources/examples/40_advanced/example_parallel_n_jobs.rst.txt

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -36,14 +36,14 @@ with AutoPyTorch
3636

3737
.. code-block:: none
3838
39-
{'accuracy': 0.8786127167630058}
39+
{'accuracy': 0.8670520231213873}
4040
autoPyTorch results:
41-
Dataset name: ec2cb869-964e-11ec-87e7-95e9f01c72a4
41+
Dataset name: 0be6cebd-9a73-11ec-87d5-474e93987d34
4242
Optimisation Metric: accuracy
4343
Best validation score: 0.8713450292397661
44-
Number of target algorithm runs: 50
45-
Number of successful target algorithm runs: 38
46-
Number of crashed target algorithm runs: 9
44+
Number of target algorithm runs: 42
45+
Number of successful target algorithm runs: 33
46+
Number of crashed target algorithm runs: 6
4747
Number of target algorithms that exceeded the time limit: 3
4848
Number of target algorithms that exceeded the memory limit: 0
4949
@@ -121,7 +121,7 @@ with AutoPyTorch
121121
122122
.. rst-class:: sphx-glr-timing
123123

124-
**Total running time of the script:** ( 5 minutes 36.610 seconds)
124+
**Total running time of the script:** ( 5 minutes 26.745 seconds)
125125

126126

127127
.. _sphx_glr_download_examples_40_advanced_example_parallel_n_jobs.py:

development/_sources/examples/40_advanced/example_plot_over_time.rst.txt

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -89,9 +89,9 @@ Task Definition
8989

9090
.. code-block:: none
9191
92-
[1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0
93-
0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 1 0
94-
0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0]
92+
[0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 0 1 0 0 1
93+
1 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 0 1 0 1
94+
1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0]
9595
9696
9797
@@ -121,7 +121,7 @@ API Instantiation and Searching
121121
.. code-block:: none
122122
123123
124-
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f7e228dc4c0>
124+
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f444956be50>
125125
126126
127127
@@ -186,7 +186,7 @@ _, ax = plt.subplots() <=== You can feed it to post-process the figure.
186186

187187
.. rst-class:: sphx-glr-timing
188188

189-
**Total running time of the script:** ( 2 minutes 16.573 seconds)
189+
**Total running time of the script:** ( 2 minutes 16.294 seconds)
190190

191191

192192
.. _sphx_glr_download_examples_40_advanced_example_plot_over_time.py:

0 commit comments

Comments
 (0)