Skip to content

Commit

Permalink
nabenabe0928: [enhance] Increase the coverage (#336)
Browse files Browse the repository at this point in the history
  • Loading branch information
Github Actions committed Nov 21, 2021
1 parent 20f8d79 commit b65ba00
Show file tree
Hide file tree
Showing 26 changed files with 379 additions and 463 deletions.
Binary file not shown.
Binary file not shown.
Binary file modified development/_images/sphx_glr_example_visualization_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_visualization_002.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_visualization_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
Expand Up @@ -86,21 +86,23 @@ Image Classification
________________________________________
Configuration:
image_augmenter:GaussianBlur:use_augmenter, Value: False
image_augmenter:GaussianNoise:sigma_offset, Value: 2.9187627000740353
image_augmenter:GaussianNoise:use_augmenter, Value: True
image_augmenter:RandomAffine:use_augmenter, Value: False
image_augmenter:RandomCutout:p, Value: 0.9740940106250766
image_augmenter:RandomCutout:use_augmenter, Value: True
image_augmenter:GaussianNoise:use_augmenter, Value: False
image_augmenter:RandomAffine:rotate, Value: 39
image_augmenter:RandomAffine:scale_offset, Value: 0.37420105043067436
image_augmenter:RandomAffine:shear, Value: 20
image_augmenter:RandomAffine:translate_percent_offset, Value: 0.20635900393110546
image_augmenter:RandomAffine:use_augmenter, Value: True
image_augmenter:RandomCutout:use_augmenter, Value: False
image_augmenter:Resize:use_augmenter, Value: False
image_augmenter:ZeroPadAndCrop:percent, Value: 0.3379048205724533
normalizer:__choice__, Value: 'NoNormalizer'
image_augmenter:ZeroPadAndCrop:percent, Value: 0.2513656933857603
normalizer:__choice__, Value: 'ImageNormalizer'

Fitting the pipeline...
________________________________________
ImageClassificationPipeline
________________________________________
0-) normalizer:
NoNormalizer
ImageNormalizer

1-) preprocessing:
EarlyPreprocessing
Expand Down Expand Up @@ -172,7 +174,7 @@ Image Classification
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 0 minutes 8.728 seconds)
**Total running time of the script:** ( 0 minutes 5.965 seconds)


.. _sphx_glr_download_examples_20_basics_example_image_classification.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,7 @@ Search for an ensemble of machine learning algorithms
.. code-block:: none
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7fd84a7ed670>
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f23518d0130>
Expand Down Expand Up @@ -162,7 +162,7 @@ Print the final ensemble performance

.. code-block:: none
<smac.runhistory.runhistory.RunHistory object at 0x7fd84a7edc40> [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
<smac.runhistory.runhistory.RunHistory object at 0x7f22b9279af0> [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
data_loader:batch_size, Value: 64
encoder:__choice__, Value: 'OneHotEncoder'
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
Expand Down Expand Up @@ -194,7 +194,7 @@ Print the final ensemble performance
scaler:__choice__, Value: 'StandardScaler'
trainer:StandardTrainer:weighted_loss, Value: True
trainer:__choice__, Value: 'StandardTrainer'
, ta_runs=0, ta_time_used=0.0, wallclock_time=0.0013194084167480469, budget=0), TrajEntry(train_perf=0.1578947368421053, incumbent_id=1, incumbent=Configuration:
, ta_runs=0, ta_time_used=0.0, wallclock_time=0.001338958740234375, budget=0), TrajEntry(train_perf=0.1578947368421053, incumbent_id=1, incumbent=Configuration:
data_loader:batch_size, Value: 64
encoder:__choice__, Value: 'OneHotEncoder'
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
Expand Down Expand Up @@ -226,7 +226,7 @@ Print the final ensemble performance
scaler:__choice__, Value: 'StandardScaler'
trainer:StandardTrainer:weighted_loss, Value: True
trainer:__choice__, Value: 'StandardTrainer'
, ta_runs=1, ta_time_used=4.939751625061035, wallclock_time=5.972339868545532, budget=5.555555555555555), TrajEntry(train_perf=0.14035087719298245, incumbent_id=2, incumbent=Configuration:
, ta_runs=1, ta_time_used=3.8828110694885254, wallclock_time=4.918331861495972, budget=5.555555555555555), TrajEntry(train_perf=0.14035087719298245, incumbent_id=2, incumbent=Configuration:
data_loader:batch_size, Value: 170
encoder:__choice__, Value: 'NoEncoder'
feature_preprocessor:Nystroem:kernel, Value: 'cosine'
Expand Down Expand Up @@ -260,32 +260,33 @@ Print the final ensemble performance
trainer:MixUpTrainer:alpha, Value: 0.758019642405335
trainer:MixUpTrainer:weighted_loss, Value: False
trainer:__choice__, Value: 'MixUpTrainer'
, ta_runs=15, ta_time_used=163.56785583496094, wallclock_time=220.1450080871582, budget=50.0)]
, ta_runs=15, ta_time_used=124.9534661769867, wallclock_time=180.62118673324585, budget=50.0)]
{'accuracy': 0.8554913294797688}
| | Preprocessing | Estimator | Weight |
|---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
| 0 | SimpleImputer,OneHotEncoder,Normalizer,KernelPCA | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.18 |
| 1 | None | KNNLearner | 0.16 |
| 2 | None | SVMLearner | 0.12 |
| 3 | None | CBLearner | 0.1 |
| 4 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
| 5 | SimpleImputer,OneHotEncoder,Normalizer,PowerTransformer | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
| 6 | None | RFLearner | 0.06 |
| 7 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
| 8 | SimpleImputer,OneHotEncoder,MinMaxScaler,PowerTransformer | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
| 9 | SimpleImputer,NoEncoder,Normalizer,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
| 10 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
| 11 | SimpleImputer,OneHotEncoder,Normalizer,TruncSVD | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
| 12 | SimpleImputer,OneHotEncoder,MinMaxScaler,TruncSVD | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
| 13 | None | ETLearner | 0.02 |
| 0 | None | CBLearner | 0.16 |
| 1 | SimpleImputer,OneHotEncoder,MinMaxScaler,PowerTransformer | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
| 2 | None | KNNLearner | 0.12 |
| 3 | SimpleImputer,OneHotEncoder,Normalizer,KernelPCA | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
| 4 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
| 5 | SimpleImputer,OneHotEncoder,Normalizer,PowerTransformer | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
| 6 | None | SVMLearner | 0.08 |
| 7 | None | RFLearner | 0.04 |
| 8 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
| 9 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
| 10 | SimpleImputer,OneHotEncoder,Normalizer,TruncSVD | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
| 11 | SimpleImputer,OneHotEncoder,MinMaxScaler,TruncSVD | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
| 12 | SimpleImputer,NoEncoder,Normalizer,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
| 13 | SimpleImputer,NoEncoder,Normalizer,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
| 14 | None | ETLearner | 0.02 |
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 5 minutes 25.958 seconds)
**Total running time of the script:** ( 5 minutes 43.592 seconds)


.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,7 @@ Search for an ensemble of machine learning algorithms
.. code-block:: none
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7fd8ed4f9ca0>
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f235be45ca0>
Expand Down Expand Up @@ -157,7 +157,7 @@ Print the final ensemble performance

.. code-block:: none
<smac.runhistory.runhistory.RunHistory object at 0x7fd8d5c37790> [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
<smac.runhistory.runhistory.RunHistory object at 0x7f2351b60fa0> [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
data_loader:batch_size, Value: 64
encoder:__choice__, Value: 'OneHotEncoder'
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
Expand Down Expand Up @@ -188,7 +188,7 @@ Print the final ensemble performance
optimizer:__choice__, Value: 'AdamOptimizer'
scaler:__choice__, Value: 'StandardScaler'
trainer:__choice__, Value: 'StandardTrainer'
, ta_runs=0, ta_time_used=0.0, wallclock_time=0.0010807514190673828, budget=0), TrajEntry(train_perf=0.30855378234329356, incumbent_id=1, incumbent=Configuration:
, ta_runs=0, ta_time_used=0.0, wallclock_time=0.0012862682342529297, budget=0), TrajEntry(train_perf=0.3195903909944855, incumbent_id=1, incumbent=Configuration:
data_loader:batch_size, Value: 64
encoder:__choice__, Value: 'OneHotEncoder'
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
Expand Down Expand Up @@ -219,8 +219,8 @@ Print the final ensemble performance
optimizer:__choice__, Value: 'AdamOptimizer'
scaler:__choice__, Value: 'StandardScaler'
trainer:__choice__, Value: 'StandardTrainer'
, ta_runs=1, ta_time_used=3.0296387672424316, wallclock_time=4.0609352588653564, budget=5.555555555555555)]
{'r2': 0.944631023189658}
, ta_runs=1, ta_time_used=2.2380120754241943, wallclock_time=3.2684011459350586, budget=5.555555555555555)]
{'r2': 0.9445248186059718}
| | Preprocessing | Estimator | Weight |
|---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
| 0 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.44 |
Expand All @@ -234,7 +234,7 @@ Print the final ensemble performance
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 5 minutes 44.149 seconds)
**Total running time of the script:** ( 5 minutes 58.839 seconds)


.. _sphx_glr_download_examples_20_basics_example_tabular_regression.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,12 +5,12 @@

Computation times
=================
**11:18.834** total execution time for **examples_20_basics** files:
**11:48.397** total execution time for **examples_20_basics** files:

+--------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:44.149 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:58.839 | 0.0 MB |
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 05:25.958 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 05:43.592 | 0.0 MB |
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:08.728 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:05.965 | 0.0 MB |
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
Loading

0 comments on commit b65ba00

Please sign in to comment.