Skip to content

Commit

Permalink
Ravin Kohli: Update README.md with link for master branch
Browse files Browse the repository at this point in the history
  • Loading branch information
Github Actions committed Nov 22, 2021
1 parent 4dffc85 commit b64c977
Show file tree
Hide file tree
Showing 26 changed files with 361 additions and 361 deletions.
Binary file not shown.
Binary file not shown.
Binary file modified development/_images/sphx_glr_example_visualization_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_visualization_002.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_visualization_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
Expand Up @@ -87,23 +87,23 @@ Image Classification
Configuration:
image_augmenter:GaussianBlur:use_augmenter, Value: False
image_augmenter:GaussianNoise:use_augmenter, Value: False
image_augmenter:RandomAffine:rotate, Value: 339
image_augmenter:RandomAffine:scale_offset, Value: 0.3007791010350451
image_augmenter:RandomAffine:shear, Value: 26
image_augmenter:RandomAffine:translate_percent_offset, Value: 0.03882945703151322
image_augmenter:RandomAffine:rotate, Value: 65
image_augmenter:RandomAffine:scale_offset, Value: 0.10364752234694663
image_augmenter:RandomAffine:shear, Value: 5
image_augmenter:RandomAffine:translate_percent_offset, Value: 0.12303023778688212
image_augmenter:RandomAffine:use_augmenter, Value: True
image_augmenter:RandomCutout:p, Value: 0.2663596033164267
image_augmenter:RandomCutout:p, Value: 0.9516838776905963
image_augmenter:RandomCutout:use_augmenter, Value: True
image_augmenter:Resize:use_augmenter, Value: True
image_augmenter:ZeroPadAndCrop:percent, Value: 0.39730616568269495
normalizer:__choice__, Value: 'NoNormalizer'
image_augmenter:Resize:use_augmenter, Value: False
image_augmenter:ZeroPadAndCrop:percent, Value: 0.2732380932749452
normalizer:__choice__, Value: 'ImageNormalizer'

Fitting the pipeline...
________________________________________
ImageClassificationPipeline
________________________________________
0-) normalizer:
NoNormalizer
ImageNormalizer

1-) preprocessing:
EarlyPreprocessing
Expand Down Expand Up @@ -175,7 +175,7 @@ Image Classification
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 0 minutes 8.173 seconds)
**Total running time of the script:** ( 0 minutes 6.216 seconds)


.. _sphx_glr_download_examples_20_basics_example_image_classification.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -134,7 +134,7 @@ Search for an ensemble of machine learning algorithms
.. code-block:: none
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f81756dd610>
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f2f6f8c4940>
Expand Down Expand Up @@ -165,28 +165,26 @@ Print the final ensemble performance

.. code-block:: none
{'accuracy': 0.838150289017341}
| | Preprocessing | Estimator | Weight |
|---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
| 0 | SimpleImputer,OneHotEncoder,Normalizer,KernelPCA | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.2 |
| 1 | None | KNNLearner | 0.16 |
| 2 | None | CBLearner | 0.14 |
| 3 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
| 4 | SimpleImputer,OneHotEncoder,Normalizer,PowerTransformer | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
| 5 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
| 6 | SimpleImputer,OneHotEncoder,MinMaxScaler,PowerTransformer | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
| 7 | SimpleImputer,NoEncoder,Normalizer,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
| 8 | None | SVMLearner | 0.04 |
| 9 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
| 10 | SimpleImputer,OneHotEncoder,MinMaxScaler,TruncSVD | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
{'accuracy': 0.8554913294797688}
| | Preprocessing | Estimator | Weight |
|---:|:----------------------------------------------------------|:----------------------------------------------------------------|---------:|
| 0 | None | RFLearner | 0.24 |
| 1 | SimpleImputer,OneHotEncoder,Normalizer,KernelPCA | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.22 |
| 2 | None | SVMLearner | 0.18 |
| 3 | None | CBLearner | 0.1 |
| 4 | None | ETLearner | 0.08 |
| 5 | None | KNNLearner | 0.08 |
| 6 | SimpleImputer,OneHotEncoder,MinMaxScaler,PowerTransformer | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
| 7 | SimpleImputer,NoEncoder,Normalizer,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
| 8 | None | LGBMLearner | 0.02 |
autoPyTorch results:
Dataset name: Australian
Optimisation Metric: accuracy
Best validation score: 0.8713450292397661
Number of target algorithm runs: 22
Number of target algorithm runs: 23
Number of successful target algorithm runs: 19
Number of crashed target algorithm runs: 2
Number of target algorithms that exceeded the time limit: 1
Number of target algorithms that exceeded the time limit: 2
Number of target algorithms that exceeded the memory limit: 0
Expand All @@ -196,7 +194,7 @@ Print the final ensemble performance
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 5 minutes 35.112 seconds)
**Total running time of the script:** ( 5 minutes 22.150 seconds)


.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,7 @@ Search for an ensemble of machine learning algorithms
.. code-block:: none
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f8217ed1ca0>
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f30125fdca0>
Expand Down Expand Up @@ -159,17 +159,17 @@ Print the final ensemble performance

.. code-block:: none
{'r2': 0.944631023189658}
{'r2': 0.9445248186059718}
| | Preprocessing | Estimator | Weight |
|---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
| 0 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.44 |
| 1 | None | CBLearner | 0.42 |
| 2 | None | LGBMLearner | 0.08 |
| 3 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
autoPyTorch results:
Dataset name: e0ac8c9c-4bbd-11ec-870e-7746ea156edb
Dataset name: 2b8bcd39-4bc0-11ec-8727-df8c3c818998
Optimisation Metric: r2
Best validation score: 0.8644967965917701
Best validation score: 0.8645385039886702
Number of target algorithm runs: 24
Number of successful target algorithm runs: 20
Number of crashed target algorithm runs: 2
Expand All @@ -183,7 +183,7 @@ Print the final ensemble performance
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 5 minutes 34.172 seconds)
**Total running time of the script:** ( 5 minutes 37.415 seconds)


.. _sphx_glr_download_examples_20_basics_example_tabular_regression.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,12 +5,12 @@

Computation times
=================
**11:17.457** total execution time for **examples_20_basics** files:
**11:05.781** total execution time for **examples_20_basics** files:

+--------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 05:35.112 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:37.415 | 0.0 MB |
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:34.172 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 05:22.150 | 0.0 MB |
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:08.173 | 0.0 MB |
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:06.216 | 0.0 MB |
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
Original file line number Diff line number Diff line change
Expand Up @@ -46,44 +46,42 @@ the search. Currently, there are two changes that can be made to the space:-

.. code-block:: none
{'accuracy': 0.8670520231213873}
{'accuracy': 0.8554913294797688}
| | Preprocessing | Estimator | Weight |
|---:|:------------------------------------------------------------------|:----------------------------------------------------------|---------:|
| 0 | None | RFLearner | 0.44 |
| 1 | None | ETLearner | 0.26 |
| 2 | None | LGBMLearner | 0.1 |
| 3 | None | SVMLearner | 0.08 |
| 4 | None | KNNLearner | 0.08 |
| 5 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
| 6 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
| 0 | None | CBLearner | 0.46 |
| 1 | SimpleImputer,OneHotEncoder,Normalizer,PolynomialFeatures | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.38 |
| 2 | None | SVMLearner | 0.06 |
| 3 | None | KNNLearner | 0.06 |
| 4 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
autoPyTorch results:
Dataset name: 4064d3b1-4bc2-11ec-870e-7746ea156edb
Dataset name: 85726e36-4bc4-11ec-8727-df8c3c818998
Optimisation Metric: accuracy
Best validation score: 0.8596491228070176
Number of target algorithm runs: 17
Number of successful target algorithm runs: 11
Number of crashed target algorithm runs: 5
Best validation score: 0.8654970760233918
Number of target algorithm runs: 18
Number of successful target algorithm runs: 14
Number of crashed target algorithm runs: 3
Number of target algorithms that exceeded the time limit: 1
Number of target algorithms that exceeded the memory limit: 0
{'accuracy': 0.861271676300578}
| | Preprocessing | Estimator | Weight |
|---:|:--------------------------------------------------------------|:----------------------------------------------------------------|---------:|
| 0 | SimpleImputer,NoEncoder,Normalizer,PowerTransformer | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.26 |
| 1 | None | KNNLearner | 0.14 |
| 2 | SimpleImputer,NoEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
| 3 | None | RFLearner | 0.1 |
| 4 | SimpleImputer,NoEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
| 5 | None | ETLearner | 0.08 |
| 6 | None | SVMLearner | 0.08 |
| 7 | SimpleImputer,NoEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
| 8 | None | LGBMLearner | 0.04 |
| 0 | SimpleImputer,NoEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.28 |
| 1 | None | RFLearner | 0.24 |
| 2 | None | KNNLearner | 0.16 |
| 3 | SimpleImputer,NoEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
| 4 | None | CBLearner | 0.08 |
| 5 | SimpleImputer,NoEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
| 6 | SimpleImputer,NoEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
| 7 | None | ETLearner | 0.02 |
| 8 | None | SVMLearner | 0.02 |
autoPyTorch results:
Dataset name: ad6f4912-4bc2-11ec-870e-7746ea156edb
Dataset name: ea262f4f-4bc4-11ec-8727-df8c3c818998
Optimisation Metric: accuracy
Best validation score: 0.8596491228070176
Number of target algorithm runs: 20
Number of successful target algorithm runs: 14
Best validation score: 0.8654970760233918
Number of target algorithm runs: 21
Number of successful target algorithm runs: 15
Number of crashed target algorithm runs: 5
Number of target algorithms that exceeded the time limit: 1
Number of target algorithms that exceeded the memory limit: 0
Expand Down Expand Up @@ -220,7 +218,7 @@ the search. Currently, there are two changes that can be made to the space:-
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 5 minutes 59.297 seconds)
**Total running time of the script:** ( 5 minutes 45.859 seconds)


.. _sphx_glr_download_examples_40_advanced_example_custom_configuration_space.py:
Expand Down
Loading

0 comments on commit b64c977

Please sign in to comment.