@@ -134,7 +134,7 @@ Search for an ensemble of machine learning algorithms
134
134
.. code-block :: none
135
135
136
136
137
- <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f94a2ebb6d0 >
137
+ <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f5f46714070 >
138
138
139
139
140
140
@@ -165,26 +165,33 @@ Print the final ensemble performance
165
165
166
166
.. code-block :: none
167
167
168
- {'accuracy': 0.861271676300578}
169
- | | Preprocessing | Estimator | Weight |
170
- |---:|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------|---------:|
171
- | 0 | None | CBLearner | 0.24 |
172
- | 1 | None | KNNLearner | 0.16 |
173
- | 2 | SimpleImputer,Variance Threshold,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
174
- | 3 | SimpleImputer,Variance Threshold,OneHotEncoder,MinMaxScaler,PowerTransformer | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
175
- | 4 | SimpleImputer,Variance Threshold,OneHotEncoder,Normalizer,PowerTransformer | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
176
- | 5 | None | SVMLearner | 0.08 |
177
- | 6 | SimpleImputer,Variance Threshold,NoEncoder,NoScaler,TruncSVD | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
178
- | 7 | None | RFLearner | 0.06 |
179
- | 8 | None | ETLearner | 0.02 |
180
- | 9 | SimpleImputer,Variance Threshold,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
168
+ {'accuracy': 0.8497109826589595}
169
+ | | Preprocessing | Estimator | Weight |
170
+ |---:|:--------------------------------------------------------------------------------------|:-------------------------------------------------------------------|---------:|
171
+ | 0 | SimpleImputer,Variance Threshold,NoEncoder,PowerTransformer,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
172
+ | 1 | SimpleImputer,Variance Threshold,NoEncoder,MinMaxScaler,KitchenSink | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
173
+ | 2 | None | CBLearner | 0.12 |
174
+ | 3 | None | SVMLearner | 0.12 |
175
+ | 4 | None | RFLearner | 0.08 |
176
+ | 5 | SimpleImputer,Variance Threshold,NoEncoder,MinMaxScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
177
+ | 6 | None | KNNLearner | 0.06 |
178
+ | 7 | SimpleImputer,Variance Threshold,OneHotEncoder,QuantileTransformer,PolynomialFeatures | embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
179
+ | 8 | SimpleImputer,Variance Threshold,OneHotEncoder,MinMaxScaler,PolynomialFeatures | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
180
+ | 9 | SimpleImputer,Variance Threshold,OneHotEncoder,NoScaler,PolynomialFeatures | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
181
+ | 10 | None | LGBMLearner | 0.04 |
182
+ | 11 | None | ETLearner | 0.04 |
183
+ | 12 | SimpleImputer,Variance Threshold,OneHotEncoder,NoScaler,PolynomialFeatures | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
184
+ | 13 | SimpleImputer,Variance Threshold,OneHotEncoder,QuantileTransformer,PolynomialFeatures | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
185
+ | 14 | SimpleImputer,Variance Threshold,NoEncoder,PowerTransformer,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
186
+ | 15 | SimpleImputer,Variance Threshold,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
187
+ | 16 | SimpleImputer,Variance Threshold,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
181
188
autoPyTorch results:
182
189
Dataset name: Australian
183
190
Optimisation Metric: accuracy
184
191
Best validation score: 0.8713450292397661
185
- Number of target algorithm runs: 29
186
- Number of successful target algorithm runs: 26
187
- Number of crashed target algorithm runs: 2
192
+ Number of target algorithm runs: 26
193
+ Number of successful target algorithm runs: 24
194
+ Number of crashed target algorithm runs: 1
188
195
Number of target algorithms that exceeded the time limit: 1
189
196
Number of target algorithms that exceeded the memory limit: 0
190
197
@@ -195,7 +202,7 @@ Print the final ensemble performance
195
202
196
203
.. rst-class :: sphx-glr-timing
197
204
198
- **Total running time of the script: ** ( 5 minutes 23.687 seconds)
205
+ **Total running time of the script: ** ( 5 minutes 22.134 seconds)
199
206
200
207
201
208
.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py :
0 commit comments