37
37
calculate_loss ,
38
38
get_metrics ,
39
39
)
40
- from autoPyTorch .pipeline .image_classification import ImageClassificationPipeline
41
- from autoPyTorch .pipeline .tabular_classification import TabularClassificationPipeline
42
- from autoPyTorch .pipeline .tabular_regression import TabularRegressionPipeline
43
- from autoPyTorch .pipeline .traditional_tabular_classification import TraditionalTabularClassificationPipeline
44
- from autoPyTorch .pipeline .traditional_tabular_regression import TraditionalTabularRegressionPipeline
40
+ import autoPyTorch .pipeline .image_classification
41
+ import autoPyTorch .pipeline .tabular_classification
42
+ import autoPyTorch .pipeline .tabular_regression
43
+ import autoPyTorch .pipeline .traditional_tabular_classification
44
+ import autoPyTorch .pipeline .traditional_tabular_regression
45
45
from autoPyTorch .utils .common import subsampler
46
46
from autoPyTorch .utils .hyperparameter_search_space_update import HyperparameterSearchSpaceUpdates
47
47
from autoPyTorch .utils .logging_ import PicklableClientLogger , get_named_client_logger
@@ -80,8 +80,9 @@ def __init__(self, config: str,
80
80
self .dataset_properties = dataset_properties
81
81
self .random_state = random_state
82
82
self .init_params = init_params
83
- self .pipeline = TraditionalTabularClassificationPipeline (dataset_properties = dataset_properties ,
84
- random_state = self .random_state )
83
+ self .pipeline = autoPyTorch .pipeline .traditional_tabular_classification . \
84
+ TraditionalTabularClassificationPipeline (dataset_properties = dataset_properties ,
85
+ random_state = self .random_state )
85
86
configuration_space = self .pipeline .get_hyperparameter_search_space ()
86
87
default_configuration = configuration_space .get_default_configuration ().get_dictionary ()
87
88
default_configuration ['model_trainer:tabular_traditional_model:traditional_learner' ] = config
@@ -119,7 +120,8 @@ def get_pipeline_representation(self) -> Dict[str, str]:
119
120
120
121
@staticmethod
121
122
def get_default_pipeline_options () -> Dict [str , Any ]:
122
- return TraditionalTabularClassificationPipeline .get_default_pipeline_options ()
123
+ return autoPyTorch .pipeline .traditional_tabular_classification . \
124
+ TraditionalTabularClassificationPipeline .get_default_pipeline_options ()
123
125
124
126
125
127
class MyTraditionalTabularRegressionPipeline (BaseEstimator ):
@@ -148,8 +150,9 @@ def __init__(self, config: str,
148
150
self .dataset_properties = dataset_properties
149
151
self .random_state = random_state
150
152
self .init_params = init_params
151
- self .pipeline = TraditionalTabularRegressionPipeline (dataset_properties = dataset_properties ,
152
- random_state = self .random_state )
153
+ self .pipeline = autoPyTorch .pipeline .traditional_tabular_regression . \
154
+ TraditionalTabularRegressionPipeline (dataset_properties = dataset_properties ,
155
+ random_state = self .random_state )
153
156
configuration_space = self .pipeline .get_hyperparameter_search_space ()
154
157
default_configuration = configuration_space .get_default_configuration ().get_dictionary ()
155
158
default_configuration ['model_trainer:tabular_traditional_model:traditional_learner' ] = config
@@ -182,7 +185,8 @@ def get_pipeline_representation(self) -> Dict[str, str]:
182
185
183
186
@staticmethod
184
187
def get_default_pipeline_options () -> Dict [str , Any ]:
185
- return TraditionalTabularRegressionPipeline .get_default_pipeline_options ()
188
+ return autoPyTorch .pipeline .traditional_tabular_regression .\
189
+ TraditionalTabularRegressionPipeline .get_default_pipeline_options ()
186
190
187
191
188
192
class DummyClassificationPipeline (DummyClassifier ):
@@ -456,7 +460,7 @@ def __init__(self, backend: Backend,
456
460
elif isinstance (self .configuration , str ):
457
461
self .pipeline_class = MyTraditionalTabularRegressionPipeline
458
462
elif isinstance (self .configuration , Configuration ):
459
- self .pipeline_class = TabularRegressionPipeline
463
+ self .pipeline_class = autoPyTorch . pipeline . tabular_regression . TabularRegressionPipeline
460
464
else :
461
465
raise ValueError ('task {} not available' .format (self .task_type ))
462
466
self .predict_function = self ._predict_regression
@@ -470,9 +474,9 @@ def __init__(self, backend: Backend,
470
474
raise ValueError ("Only tabular tasks are currently supported with traditional methods" )
471
475
elif isinstance (self .configuration , Configuration ):
472
476
if self .task_type in TABULAR_TASKS :
473
- self .pipeline_class = TabularClassificationPipeline
477
+ self .pipeline_class = autoPyTorch . pipeline . tabular_classification . TabularClassificationPipeline
474
478
elif self .task_type in IMAGE_TASKS :
475
- self .pipeline_class = ImageClassificationPipeline
479
+ self .pipeline_class = autoPyTorch . pipeline . image_classification . ImageClassificationPipeline
476
480
else :
477
481
raise ValueError ('task {} not available' .format (self .task_type ))
478
482
self .predict_function = self ._predict_proba
0 commit comments