Skip to content

Commit 54523f5

Browse files
author
Github Actions
committed
Ravin Kohli: [RELEASE] v0.2.1 (#475)
1 parent 09435f4 commit 54523f5

File tree

80 files changed

+2368
-1128
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

80 files changed

+2368
-1128
lines changed

master/.buildinfo

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
# Sphinx build info version 1
22
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
3-
config: 29bd076c4adc563a4d280f931be44bec
3+
config: 81b1e868fc54c75351118afeb42f47f5
44
tags: 645f666f9bcd5a90fca523b33c5a78b7

master/_downloads/38ebc52de63d1626596d1647c695c721/example_tabular_regression.ipynb

Lines changed: 39 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -80,14 +80,14 @@
8080
},
8181
"outputs": [],
8282
"source": [
83-
"api.search(\n X_train=X_train,\n y_train=y_train,\n X_test=X_test.copy(),\n y_test=y_test.copy(),\n optimize_metric='r2',\n total_walltime_limit=300,\n func_eval_time_limit_secs=50,\n)"
83+
"api.search(\n X_train=X_train,\n y_train=y_train,\n X_test=X_test.copy(),\n y_test=y_test.copy(),\n optimize_metric='r2',\n total_walltime_limit=300,\n func_eval_time_limit_secs=50,\n dataset_name=\"Boston\"\n)"
8484
]
8585
},
8686
{
8787
"cell_type": "markdown",
8888
"metadata": {},
8989
"source": [
90-
"## Print the final ensemble performance\n\n"
90+
"## Print the final ensemble performance before refit\n\n"
9191
]
9292
},
9393
{
@@ -98,7 +98,43 @@
9898
},
9999
"outputs": [],
100100
"source": [
101-
"y_pred = api.predict(X_test)\n\n# Rescale the Neural Network predictions into the original target range\nscore = api.score(y_pred, y_test)\n\nprint(score)\n# Print the final ensemble built by AutoPyTorch\nprint(api.show_models())\n\n# Print statistics from search\nprint(api.sprint_statistics())"
101+
"y_pred = api.predict(X_test)\nscore = api.score(y_pred, y_test)\nprint(score)\n\n# Print statistics from search\nprint(api.sprint_statistics())"
102+
]
103+
},
104+
{
105+
"cell_type": "markdown",
106+
"metadata": {},
107+
"source": [
108+
"## Refit the models on the full dataset.\n\n"
109+
]
110+
},
111+
{
112+
"cell_type": "code",
113+
"execution_count": null,
114+
"metadata": {
115+
"collapsed": false
116+
},
117+
"outputs": [],
118+
"source": [
119+
"api.refit(\n X_train=X_train,\n y_train=y_train,\n X_test=X_test,\n y_test=y_test,\n dataset_name=\"Boston\",\n total_walltime_limit=500,\n run_time_limit_secs=50\n # you can change the resampling strategy to\n # for example, CrossValTypes.k_fold_cross_validation\n # to fit k fold models and have a voting classifier\n # resampling_strategy=CrossValTypes.k_fold_cross_validation\n)"
120+
]
121+
},
122+
{
123+
"cell_type": "markdown",
124+
"metadata": {},
125+
"source": [
126+
"## Print the final ensemble performance after refit\n\n"
127+
]
128+
},
129+
{
130+
"cell_type": "code",
131+
"execution_count": null,
132+
"metadata": {
133+
"collapsed": false
134+
},
135+
"outputs": [],
136+
"source": [
137+
"y_pred = api.predict(X_test)\nscore = api.score(y_pred, y_test)\nprint(score)\n\n# Print the final ensemble built by AutoPyTorch\nprint(api.show_models())"
102138
]
103139
}
104140
],

master/_downloads/3b0b756ccfcac69e6a1673e56f2f543f/example_visualization.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515
"cell_type": "markdown",
1616
"metadata": {},
1717
"source": [
18-
"\n# Visualizing the Results\n\nAuto-Pytorch uses SMAC to fit individual machine learning algorithms\nand then ensembles them together using `Ensemble Selection\n<https://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icml04.icdm06long.pdf>`_.\n\nThe following examples shows how to visualize both the performance\nof the individual models and their respective ensemble.\n\nAdditionally, as we are compatible with scikit-learn,\nwe show how to further interact with `Scikit-Learn Inspection\n<https://scikit-learn.org/stable/inspection.html>`_ support.\n"
18+
"\n# Visualizing the Results\n\nAuto-Pytorch uses SMAC to fit individual machine learning algorithms\nand then ensembles them together using [Ensemble Selection](https://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icml04.icdm06long.pdf).\n\nThe following examples shows how to visualize both the performance\nof the individual models and their respective ensemble.\n\nAdditionally, as we are compatible with scikit-learn,\nwe show how to further interact with [Scikit-Learn Inspection](https://scikit-learn.org/stable/inspection.html) support.\n"
1919
]
2020
},
2121
{

master/_downloads/6ee656697d20c490e1d49bdbfb69d108/example_tabular_classification.ipynb

Lines changed: 40 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515
"cell_type": "markdown",
1616
"metadata": {},
1717
"source": [
18-
"\n# Tabular Classification\n\nThe following example shows how to fit a sample classification model\nwith AutoPyTorch\n"
18+
"\n# Tabular Classification\n\nThe following example shows how to fit a simple classification ensemble\nwith AutoPyTorch and refit the found ensemble.\n"
1919
]
2020
},
2121
{
@@ -26,7 +26,7 @@
2626
},
2727
"outputs": [],
2828
"source": [
29-
"import os\nimport tempfile as tmp\nimport warnings\n\nos.environ['JOBLIB_TEMP_FOLDER'] = tmp.gettempdir()\nos.environ['OMP_NUM_THREADS'] = '1'\nos.environ['OPENBLAS_NUM_THREADS'] = '1'\nos.environ['MKL_NUM_THREADS'] = '1'\n\nwarnings.simplefilter(action='ignore', category=UserWarning)\nwarnings.simplefilter(action='ignore', category=FutureWarning)\n\nimport sklearn.datasets\nimport sklearn.model_selection\n\nfrom autoPyTorch.api.tabular_classification import TabularClassificationTask"
29+
"import os\nimport tempfile as tmp\nimport warnings\n\nfrom autoPyTorch.datasets.resampling_strategy import CrossValTypes\n\nos.environ['JOBLIB_TEMP_FOLDER'] = tmp.gettempdir()\nos.environ['OMP_NUM_THREADS'] = '1'\nos.environ['OPENBLAS_NUM_THREADS'] = '1'\nos.environ['MKL_NUM_THREADS'] = '1'\n\nwarnings.simplefilter(action='ignore', category=UserWarning)\nwarnings.simplefilter(action='ignore', category=FutureWarning)\n\nimport sklearn.datasets\nimport sklearn.model_selection\n\nfrom autoPyTorch.api.tabular_classification import TabularClassificationTask"
3030
]
3131
},
3232
{
@@ -87,7 +87,7 @@
8787
"cell_type": "markdown",
8888
"metadata": {},
8989
"source": [
90-
"## Print the final ensemble performance\n\n"
90+
"## Print the final ensemble performance before refit\n\n"
9191
]
9292
},
9393
{
@@ -98,7 +98,43 @@
9898
},
9999
"outputs": [],
100100
"source": [
101-
"y_pred = api.predict(X_test)\nscore = api.score(y_pred, y_test)\nprint(score)\n# Print the final ensemble built by AutoPyTorch\nprint(api.show_models())\n\n# Print statistics from search\nprint(api.sprint_statistics())"
101+
"y_pred = api.predict(X_test)\nscore = api.score(y_pred, y_test)\nprint(score)\n\n# Print statistics from search\nprint(api.sprint_statistics())"
102+
]
103+
},
104+
{
105+
"cell_type": "markdown",
106+
"metadata": {},
107+
"source": [
108+
"## Refit the models on the full dataset.\n\n"
109+
]
110+
},
111+
{
112+
"cell_type": "code",
113+
"execution_count": null,
114+
"metadata": {
115+
"collapsed": false
116+
},
117+
"outputs": [],
118+
"source": [
119+
"api.refit(\n X_train=X_train,\n y_train=y_train,\n X_test=X_test,\n y_test=y_test,\n dataset_name=\"Australian\",\n # you can change the resampling strategy to\n # for example, CrossValTypes.k_fold_cross_validation\n # to fit k fold models and have a voting classifier\n # resampling_strategy=CrossValTypes.k_fold_cross_validation\n)"
120+
]
121+
},
122+
{
123+
"cell_type": "markdown",
124+
"metadata": {},
125+
"source": [
126+
"## Print the final ensemble performance after refit\n\n"
127+
]
128+
},
129+
{
130+
"cell_type": "code",
131+
"execution_count": null,
132+
"metadata": {
133+
"collapsed": false
134+
},
135+
"outputs": [],
136+
"source": [
137+
"y_pred = api.predict(X_test)\nscore = api.score(y_pred, y_test)\nprint(score)\n\n# Print the final ensemble built by AutoPyTorch\nprint(api.show_models())"
102138
]
103139
}
104140
],

master/_downloads/8410e1dea0ba7de106ac5e2a04cee84d/example_plot_over_time.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515
"cell_type": "markdown",
1616
"metadata": {},
1717
"source": [
18-
"\n# Plot the Performance over Time\n\nAuto-Pytorch uses SMAC to fit individual machine learning algorithms\nand then ensembles them together using `Ensemble Selection\n<https://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icml04.icdm06long.pdf>`_.\n\nThe following examples shows how to plot both the performance\nof the individual models and their respective ensemble.\n\nAdditionally, as we are compatible with matplotlib,\nyou can input any args or kwargs that are compatible with ax.plot.\nIn the case when you would like to create multipanel visualization,\nplease input plt.Axes obtained from matplotlib.pyplot.subplots.\n"
18+
"\n# Plot the Performance over Time\n\nAuto-Pytorch uses SMAC to fit individual machine learning algorithms\nand then ensembles them together using [Ensemble Selection](https://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icml04.icdm06long.pdf).\n\nThe following examples shows how to plot both the performance\nof the individual models and their respective ensemble.\n\nAdditionally, as we are compatible with matplotlib,\nyou can input any args or kwargs that are compatible with ax.plot.\nIn the case when you would like to create multipanel visualization,\nplease input plt.Axes obtained from matplotlib.pyplot.subplots.\n"
1919
]
2020
},
2121
{

master/_downloads/bbd6ad27117588060207b551c10df82e/example_tabular_regression.py

Lines changed: 32 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -50,19 +50,44 @@
5050
optimize_metric='r2',
5151
total_walltime_limit=300,
5252
func_eval_time_limit_secs=50,
53+
dataset_name="Boston"
5354
)
5455

5556
############################################################################
56-
# Print the final ensemble performance
57-
# ====================================
57+
# Print the final ensemble performance before refit
58+
# =================================================
5859
y_pred = api.predict(X_test)
59-
60-
# Rescale the Neural Network predictions into the original target range
6160
score = api.score(y_pred, y_test)
62-
6361
print(score)
64-
# Print the final ensemble built by AutoPyTorch
65-
print(api.show_models())
6662

6763
# Print statistics from search
6864
print(api.sprint_statistics())
65+
66+
###########################################################################
67+
# Refit the models on the full dataset.
68+
# =====================================
69+
70+
api.refit(
71+
X_train=X_train,
72+
y_train=y_train,
73+
X_test=X_test,
74+
y_test=y_test,
75+
dataset_name="Boston",
76+
total_walltime_limit=500,
77+
run_time_limit_secs=50
78+
# you can change the resampling strategy to
79+
# for example, CrossValTypes.k_fold_cross_validation
80+
# to fit k fold models and have a voting classifier
81+
# resampling_strategy=CrossValTypes.k_fold_cross_validation
82+
)
83+
84+
############################################################################
85+
# Print the final ensemble performance after refit
86+
# ================================================
87+
88+
y_pred = api.predict(X_test)
89+
score = api.score(y_pred, y_test)
90+
print(score)
91+
92+
# Print the final ensemble built by AutoPyTorch
93+
print(api.show_models())
Binary file not shown.

master/_downloads/eaf3a203570ee37a60e53304131a24a3/example_tabular_classification.py

Lines changed: 34 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -3,13 +3,15 @@
33
Tabular Classification
44
======================
55
6-
The following example shows how to fit a sample classification model
7-
with AutoPyTorch
6+
The following example shows how to fit a simple classification ensemble
7+
with AutoPyTorch and refit the found ensemble.
88
"""
99
import os
1010
import tempfile as tmp
1111
import warnings
1212

13+
from autoPyTorch.datasets.resampling_strategy import CrossValTypes
14+
1315
os.environ['JOBLIB_TEMP_FOLDER'] = tmp.gettempdir()
1416
os.environ['OMP_NUM_THREADS'] = '1'
1517
os.environ['OPENBLAS_NUM_THREADS'] = '1'
@@ -62,13 +64,39 @@
6264
)
6365

6466
############################################################################
65-
# Print the final ensemble performance
66-
# ====================================
67+
# Print the final ensemble performance before refit
68+
# =================================================
69+
6770
y_pred = api.predict(X_test)
6871
score = api.score(y_pred, y_test)
6972
print(score)
70-
# Print the final ensemble built by AutoPyTorch
71-
print(api.show_models())
7273

7374
# Print statistics from search
7475
print(api.sprint_statistics())
76+
77+
###########################################################################
78+
# Refit the models on the full dataset.
79+
# =====================================
80+
81+
api.refit(
82+
X_train=X_train,
83+
y_train=y_train,
84+
X_test=X_test,
85+
y_test=y_test,
86+
dataset_name="Australian",
87+
# you can change the resampling strategy to
88+
# for example, CrossValTypes.k_fold_cross_validation
89+
# to fit k fold models and have a voting classifier
90+
# resampling_strategy=CrossValTypes.k_fold_cross_validation
91+
)
92+
93+
############################################################################
94+
# Print the final ensemble performance after refit
95+
# ================================================
96+
97+
y_pred = api.predict(X_test)
98+
score = api.score(y_pred, y_test)
99+
print(score)
100+
101+
# Print the final ensemble built by AutoPyTorch
102+
print(api.show_models())
Binary file not shown.
Loading
Loading
Loading
Loading

master/_modules/autoPyTorch/api/tabular_classification.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
<head>
55
<meta charset="utf-8" />
66
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
7-
<title>autoPyTorch.api.tabular_classification &#8212; AutoPyTorch 0.2 documentation</title>
7+
<title>autoPyTorch.api.tabular_classification &#8212; AutoPyTorch 0.2.1 documentation</title>
88
<link rel="stylesheet" type="text/css" href="../../../_static/pygments.css" />
99
<link rel="stylesheet" type="text/css" href="../../../_static/bootstrap-sphinx.css" />
1010
<link rel="stylesheet" type="text/css" href="../../../_static/sg_gallery.css" />
@@ -55,7 +55,7 @@
5555
</button>
5656
<a class="navbar-brand" href="../../../index.html">
5757
Auto-PyTorch</a>
58-
<span class="navbar-text navbar-version pull-left"><b>0.2</b></span>
58+
<span class="navbar-text navbar-version pull-left"><b>0.2.1</b></span>
5959
</div>
6060

6161
<div class="collapse navbar-collapse nav-collapse">
@@ -638,7 +638,7 @@ <h1>Source code for autoPyTorch.api.tabular_classification</h1><div class="highl
638638
</p>
639639
<p>
640640
&copy; Copyright 2014-2022, Machine Learning Professorship Freiburg.<br/>
641-
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 5.0.2.<br/>
641+
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 5.1.1.<br/>
642642
</p>
643643
</div>
644644
</footer>

master/_modules/autoPyTorch/api/tabular_regression.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
<head>
55
<meta charset="utf-8" />
66
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
7-
<title>autoPyTorch.api.tabular_regression &#8212; AutoPyTorch 0.2 documentation</title>
7+
<title>autoPyTorch.api.tabular_regression &#8212; AutoPyTorch 0.2.1 documentation</title>
88
<link rel="stylesheet" type="text/css" href="../../../_static/pygments.css" />
99
<link rel="stylesheet" type="text/css" href="../../../_static/bootstrap-sphinx.css" />
1010
<link rel="stylesheet" type="text/css" href="../../../_static/sg_gallery.css" />
@@ -55,7 +55,7 @@
5555
</button>
5656
<a class="navbar-brand" href="../../../index.html">
5757
Auto-PyTorch</a>
58-
<span class="navbar-text navbar-version pull-left"><b>0.2</b></span>
58+
<span class="navbar-text navbar-version pull-left"><b>0.2.1</b></span>
5959
</div>
6060

6161
<div class="collapse navbar-collapse nav-collapse">
@@ -615,7 +615,7 @@ <h1>Source code for autoPyTorch.api.tabular_regression</h1><div class="highlight
615615
</p>
616616
<p>
617617
&copy; Copyright 2014-2022, Machine Learning Professorship Freiburg.<br/>
618-
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 5.0.2.<br/>
618+
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 5.1.1.<br/>
619619
</p>
620620
</div>
621621
</footer>

master/_modules/autoPyTorch/api/time_series_forecasting.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
<head>
55
<meta charset="utf-8" />
66
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
7-
<title>autoPyTorch.api.time_series_forecasting &#8212; AutoPyTorch 0.2 documentation</title>
7+
<title>autoPyTorch.api.time_series_forecasting &#8212; AutoPyTorch 0.2.1 documentation</title>
88
<link rel="stylesheet" type="text/css" href="../../../_static/pygments.css" />
99
<link rel="stylesheet" type="text/css" href="../../../_static/bootstrap-sphinx.css" />
1010
<link rel="stylesheet" type="text/css" href="../../../_static/sg_gallery.css" />
@@ -55,7 +55,7 @@
5555
</button>
5656
<a class="navbar-brand" href="../../../index.html">
5757
Auto-PyTorch</a>
58-
<span class="navbar-text navbar-version pull-left"><b>0.2</b></span>
58+
<span class="navbar-text navbar-version pull-left"><b>0.2.1</b></span>
5959
</div>
6060

6161
<div class="collapse navbar-collapse nav-collapse">
@@ -721,7 +721,7 @@ <h1>Source code for autoPyTorch.api.time_series_forecasting</h1><div class="high
721721
</p>
722722
<p>
723723
&copy; Copyright 2014-2022, Machine Learning Professorship Freiburg.<br/>
724-
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 5.0.2.<br/>
724+
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 5.1.1.<br/>
725725
</p>
726726
</div>
727727
</footer>

master/_modules/autoPyTorch/pipeline/components/base_choice.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
<head>
55
<meta charset="utf-8" />
66
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
7-
<title>autoPyTorch.pipeline.components.base_choice &#8212; AutoPyTorch 0.2 documentation</title>
7+
<title>autoPyTorch.pipeline.components.base_choice &#8212; AutoPyTorch 0.2.1 documentation</title>
88
<link rel="stylesheet" type="text/css" href="../../../../_static/pygments.css" />
99
<link rel="stylesheet" type="text/css" href="../../../../_static/bootstrap-sphinx.css" />
1010
<link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery.css" />
@@ -55,7 +55,7 @@
5555
</button>
5656
<a class="navbar-brand" href="../../../../index.html">
5757
Auto-PyTorch</a>
58-
<span class="navbar-text navbar-version pull-left"><b>0.2</b></span>
58+
<span class="navbar-text navbar-version pull-left"><b>0.2.1</b></span>
5959
</div>
6060

6161
<div class="collapse navbar-collapse nav-collapse">
@@ -435,7 +435,7 @@ <h1>Source code for autoPyTorch.pipeline.components.base_choice</h1><div class="
435435
</p>
436436
<p>
437437
&copy; Copyright 2014-2022, Machine Learning Professorship Freiburg.<br/>
438-
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 5.0.2.<br/>
438+
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 5.1.1.<br/>
439439
</p>
440440
</div>
441441
</footer>

0 commit comments

Comments
 (0)