@@ -36,7 +36,7 @@ with AutoPyTorch
36
36
37
37
.. code-block :: none
38
38
39
- <smac.runhistory.runhistory.RunHistory object at 0x7f9add238610 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
39
+ <smac.runhistory.runhistory.RunHistory object at 0x7f65d474acd0 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
40
40
data_loader:batch_size, Value: 32
41
41
encoder:__choice__, Value: 'OneHotEncoder'
42
42
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -73,7 +73,7 @@ with AutoPyTorch
73
73
optimizer:AdamOptimizer:beta2, Value: 0.9
74
74
optimizer:AdamOptimizer:lr, Value: 0.01
75
75
optimizer:AdamOptimizer:use_weight_decay, Value: True
76
- optimizer:AdamOptimizer:weight_decay, Value: 0.0
76
+ optimizer:AdamOptimizer:weight_decay, Value: 0.0001
77
77
optimizer:__choice__, Value: 'AdamOptimizer'
78
78
scaler:__choice__, Value: 'StandardScaler'
79
79
trainer:StandardTrainer:Lookahead:la_alpha, Value: 0.6
@@ -84,7 +84,7 @@ with AutoPyTorch
84
84
trainer:StandardTrainer:use_stochastic_weight_averaging, Value: True
85
85
trainer:StandardTrainer:weighted_loss, Value: True
86
86
trainer:__choice__, Value: 'StandardTrainer'
87
- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0023033618927001953 , budget=0), TrajEntry(train_perf=0.19298245614035092 , incumbent_id=1, incumbent=Configuration:
87
+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0023374557495117188 , budget=0), TrajEntry(train_perf=0.15204678362573099 , incumbent_id=1, incumbent=Configuration:
88
88
data_loader:batch_size, Value: 32
89
89
encoder:__choice__, Value: 'OneHotEncoder'
90
90
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -121,7 +121,7 @@ with AutoPyTorch
121
121
optimizer:AdamOptimizer:beta2, Value: 0.9
122
122
optimizer:AdamOptimizer:lr, Value: 0.01
123
123
optimizer:AdamOptimizer:use_weight_decay, Value: True
124
- optimizer:AdamOptimizer:weight_decay, Value: 0.0
124
+ optimizer:AdamOptimizer:weight_decay, Value: 0.0001
125
125
optimizer:__choice__, Value: 'AdamOptimizer'
126
126
scaler:__choice__, Value: 'StandardScaler'
127
127
trainer:StandardTrainer:Lookahead:la_alpha, Value: 0.6
@@ -132,7 +132,7 @@ with AutoPyTorch
132
132
trainer:StandardTrainer:use_stochastic_weight_averaging, Value: True
133
133
trainer:StandardTrainer:weighted_loss, Value: True
134
134
trainer:__choice__, Value: 'StandardTrainer'
135
- , ta_runs=1, ta_time_used=5.061767578125 , wallclock_time=6.761995077133179 , budget=5.555555555555555), TrajEntry(train_perf=0.15204678362573099 , incumbent_id=2, incumbent=Configuration:
135
+ , ta_runs=1, ta_time_used=5.916302919387817 , wallclock_time=7.4252846240997314 , budget=5.555555555555555), TrajEntry(train_perf=0.14035087719298245 , incumbent_id=2, incumbent=Configuration:
136
136
data_loader:batch_size, Value: 75
137
137
encoder:__choice__, Value: 'OneHotEncoder'
138
138
feature_preprocessor:RandomKitchenSinks:gamma, Value: 0.013010719396102707
@@ -147,8 +147,8 @@ with AutoPyTorch
147
147
network_backbone:ResNetBackbone:blocks_per_group_1, Value: 3
148
148
network_backbone:ResNetBackbone:multi_branch_choice, Value: 'shake-shake'
149
149
network_backbone:ResNetBackbone:num_groups, Value: 1
150
- network_backbone:ResNetBackbone:num_units_0, Value: 891
151
- network_backbone:ResNetBackbone:num_units_1, Value: 534
150
+ network_backbone:ResNetBackbone:num_units_0, Value: 553
151
+ network_backbone:ResNetBackbone:num_units_1, Value: 107
152
152
network_backbone:ResNetBackbone:use_batch_norm, Value: False
153
153
network_backbone:ResNetBackbone:use_dropout, Value: False
154
154
network_backbone:ResNetBackbone:use_skip_connection, Value: True
@@ -164,7 +164,7 @@ with AutoPyTorch
164
164
optimizer:RMSpropOptimizer:lr, Value: 0.016961171655317835
165
165
optimizer:RMSpropOptimizer:momentum, Value: 0.7920241884670927
166
166
optimizer:RMSpropOptimizer:use_weight_decay, Value: True
167
- optimizer:RMSpropOptimizer:weight_decay, Value: 0.032552201041967745
167
+ optimizer:RMSpropOptimizer:weight_decay, Value: 8.977017307979806e-06
168
168
optimizer:__choice__, Value: 'RMSpropOptimizer'
169
169
scaler:Normalizer:norm, Value: 'mean_squared'
170
170
scaler:__choice__, Value: 'Normalizer'
@@ -177,60 +177,22 @@ with AutoPyTorch
177
177
trainer:MixUpTrainer:use_stochastic_weight_averaging, Value: False
178
178
trainer:MixUpTrainer:weighted_loss, Value: False
179
179
trainer:__choice__, Value: 'MixUpTrainer'
180
- , ta_runs=19, ta_time_used=214.1450550556183, wallclock_time=279.02319598197937, budget=50.0), TrajEntry(train_perf=0.11695906432748537, incumbent_id=3, incumbent=Configuration:
181
- data_loader:batch_size, Value: 222
182
- encoder:__choice__, Value: 'OneHotEncoder'
183
- feature_preprocessor:Nystroem:kernel, Value: 'cosine'
184
- feature_preprocessor:Nystroem:n_components, Value: 6
185
- feature_preprocessor:__choice__, Value: 'Nystroem'
186
- imputer:categorical_strategy, Value: 'most_frequent'
187
- imputer:numerical_strategy, Value: 'most_frequent'
188
- lr_scheduler:__choice__, Value: 'NoScheduler'
189
- network_backbone:ShapedResNetBackbone:activation, Value: 'relu'
190
- network_backbone:ShapedResNetBackbone:blocks_per_group, Value: 2
191
- network_backbone:ShapedResNetBackbone:max_units, Value: 793
192
- network_backbone:ShapedResNetBackbone:multi_branch_choice, Value: 'shake-shake'
193
- network_backbone:ShapedResNetBackbone:num_groups, Value: 1
194
- network_backbone:ShapedResNetBackbone:output_dim, Value: 408
195
- network_backbone:ShapedResNetBackbone:resnet_shape, Value: 'diamond'
196
- network_backbone:ShapedResNetBackbone:use_batch_norm, Value: True
197
- network_backbone:ShapedResNetBackbone:use_dropout, Value: False
198
- network_backbone:ShapedResNetBackbone:use_skip_connection, Value: True
199
- network_backbone:__choice__, Value: 'ShapedResNetBackbone'
200
- network_embedding:__choice__, Value: 'NoEmbedding'
201
- network_head:__choice__, Value: 'fully_connected'
202
- network_head:fully_connected:activation, Value: 'relu'
203
- network_head:fully_connected:num_layers, Value: 2
204
- network_head:fully_connected:units_layer_1, Value: 342
205
- network_init:NoInit:bias_strategy, Value: 'Normal'
206
- network_init:__choice__, Value: 'NoInit'
207
- optimizer:RMSpropOptimizer:alpha, Value: 0.31508999898669854
208
- optimizer:RMSpropOptimizer:lr, Value: 0.000141083113558384
209
- optimizer:RMSpropOptimizer:momentum, Value: 0.4310565312768747
210
- optimizer:RMSpropOptimizer:use_weight_decay, Value: False
211
- optimizer:__choice__, Value: 'RMSpropOptimizer'
212
- scaler:Normalizer:norm, Value: 'mean_squared'
213
- scaler:__choice__, Value: 'Normalizer'
214
- trainer:AdversarialTrainer:epsilon, Value: 0.13573947533310454
215
- trainer:AdversarialTrainer:se_lastk, Constant: 3
216
- trainer:AdversarialTrainer:use_lookahead_optimizer, Value: False
217
- trainer:AdversarialTrainer:use_snapshot_ensemble, Value: True
218
- trainer:AdversarialTrainer:use_stochastic_weight_averaging, Value: True
219
- trainer:AdversarialTrainer:weighted_loss, Value: False
220
- trainer:__choice__, Value: 'AdversarialTrainer'
221
- , ta_runs=20, ta_time_used=233.27314519882202, wallclock_time=302.0042383670807, budget=50.0)]
222
- {'accuracy': 0.8959537572254336}
180
+ , ta_runs=19, ta_time_used=204.9274971485138, wallclock_time=272.3745219707489, budget=50.0)]
181
+ {'accuracy': 0.884393063583815}
223
182
| | Preprocessing | Estimator | Weight |
224
183
|---:|:------------------------------------------------------------------|:-------------------------------------------------------------------|---------:|
225
184
| 0 | None | CatBoostClassifier | 0.34 |
226
- | 1 | SimpleImputer,NoEncoder,Normalizer,NoFeaturePreprocessing | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
227
- | 2 | SimpleImputer,OneHotEncoder,Normalizer,Nystroem | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
228
- | 3 | SimpleImputer,OneHotEncoder,StandardScaler,TruncSVD | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
229
- | 4 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
230
- | 5 | SimpleImputer,OneHotEncoder,StandardScaler,Nystroem | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
231
- | 6 | None | KNNClassifier | 0.02 |
232
- | 7 | None | RFClassifier | 0.02 |
233
- | 8 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
185
+ | 1 | None | RFClassifier | 0.14 |
186
+ | 2 | SimpleImputer,OneHotEncoder,Normalizer,KernelPCA | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
187
+ | 3 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
188
+ | 4 | SimpleImputer,OneHotEncoder,StandardScaler,PolynomialFeatures | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
189
+ | 5 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
190
+ | 6 | SimpleImputer,OneHotEncoder,Normalizer,Nystroem | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
191
+ | 7 | None | KNNClassifier | 0.04 |
192
+ | 8 | SimpleImputer,OneHotEncoder,StandardScaler,Nystroem | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
193
+ | 9 | SimpleImputer,OneHotEncoder,StandardScaler,PowerTransformer | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
194
+ | 10 | None | SVC | 0.02 |
195
+ | 11 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
234
196
235
197
236
198
@@ -322,7 +284,7 @@ with AutoPyTorch
322
284
323
285
.. rst-class :: sphx-glr-timing
324
286
325
- **Total running time of the script: ** ( 9 minutes 20.536 seconds)
287
+ **Total running time of the script: ** ( 9 minutes 24.694 seconds)
326
288
327
289
328
290
.. _sphx_glr_download_examples_example_tabular_classification.py :
0 commit comments