|
122 | 122 | <p>The following example shows how to fit a sample classification model |
123 | 123 | with AutoPyTorch</p> |
124 | 124 | <p class="sphx-glr-script-out">Out:</p> |
125 | | -<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span><smac.runhistory.runhistory.RunHistory object at 0x7f66907c4640> [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration: |
| 125 | +<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span><smac.runhistory.runhistory.RunHistory object at 0x7fec89f16190> [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration: |
126 | 126 | data_loader:batch_size, Value: 32 |
127 | 127 | encoder:__choice__, Value: 'OneHotEncoder' |
128 | 128 | feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor' |
|
153 | 153 | scaler:__choice__, Value: 'StandardScaler' |
154 | 154 | trainer:StandardTrainer:weighted_loss, Value: True |
155 | 155 | trainer:__choice__, Value: 'StandardTrainer' |
156 | | -, ta_runs=0, ta_time_used=0.0, wallclock_time=0.002040863037109375, budget=0), TrajEntry(train_perf=0.14619883040935677, incumbent_id=1, incumbent=Configuration: |
| 156 | +, ta_runs=0, ta_time_used=0.0, wallclock_time=0.0020265579223632812, budget=0), TrajEntry(train_perf=0.1871345029239766, incumbent_id=1, incumbent=Configuration: |
157 | 157 | data_loader:batch_size, Value: 32 |
158 | 158 | encoder:__choice__, Value: 'OneHotEncoder' |
159 | 159 | feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor' |
|
184 | 184 | scaler:__choice__, Value: 'StandardScaler' |
185 | 185 | trainer:StandardTrainer:weighted_loss, Value: True |
186 | 186 | trainer:__choice__, Value: 'StandardTrainer' |
187 | | -, ta_runs=1, ta_time_used=4.407814264297485, wallclock_time=5.844383239746094, budget=5.555555555555555)] |
188 | | -{'accuracy': 0.861271676300578} |
| 187 | +, ta_runs=1, ta_time_used=5.460636854171753, wallclock_time=6.8977086544036865, budget=5.555555555555555)] |
| 188 | +{'accuracy': 0.8728323699421965} |
189 | 189 | | | Preprocessing | Estimator | Weight | |
190 | 190 | |---:|:------------------------------------------------------------------|:------------------------------------------------------|---------:| |
191 | | -| 0 | None | RFClassifier | 0.26 | |
192 | | -| 1 | None | ExtraTreesClassifier | 0.22 | |
193 | | -| 2 | SimpleImputer,OrdinalEncoder,NoScaler,Nystroem | ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 | |
194 | | -| 3 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 | |
195 | | -| 4 | SimpleImputer,OrdinalEncoder,Normalizer,PowerTransformer | MLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 | |
196 | | -| 5 | None | SVC | 0.06 | |
197 | | -| 6 | None | KNNClassifier | 0.04 | |
198 | | -| 7 | SimpleImputer,OrdinalEncoder,Normalizer,PowerTransformer | MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 | |
199 | | -| 8 | SimpleImputer,OrdinalEncoder,MinMaxScaler,KitchenSink | ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.02 | |
200 | | -| 9 | SimpleImputer,OrdinalEncoder,MinMaxScaler,KitchenSink | ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.02 | |
201 | | -| 10 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 | |
| 191 | +| 0 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.22 | |
| 192 | +| 1 | SimpleImputer,OrdinalEncoder,Normalizer,PowerTransformer | MLPBackbone,FullyConnectedHead,nn.Sequential | 0.2 | |
| 193 | +| 2 | SimpleImputer,OrdinalEncoder,NoScaler,Nystroem | ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.2 | |
| 194 | +| 3 | None | RFClassifier | 0.14 | |
| 195 | +| 4 | None | ExtraTreesClassifier | 0.1 | |
| 196 | +| 5 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 | |
| 197 | +| 6 | SimpleImputer,OneHotEncoder,MinMaxScaler,PowerTransformer | ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.04 | |
| 198 | +| 7 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 | |
| 199 | +| 8 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 | |
202 | 200 | </pre></div> |
203 | 201 | </div> |
204 | 202 | <div class="line-block"> |
|
283 | 281 | <span class="nb">print</span><span class="p">(</span><span class="n">api</span><span class="o">.</span><span class="n">show_models</span><span class="p">())</span> |
284 | 282 | </pre></div> |
285 | 283 | </div> |
286 | | -<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 9 minutes 9.069 seconds)</p> |
| 284 | +<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 9 minutes 26.880 seconds)</p> |
287 | 285 | <div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-examples-example-tabular-classification-py"> |
288 | 286 | <div class="binder-badge docutils container"> |
289 | 287 | <a class="reference external image-reference" href="https://mybinder.org/v2/gh/automl/Auto-PyTorch/refactor_development?urlpath=lab/tree/notebooks/examples/example_tabular_classification.ipynb"><img alt="Launch binder" src="../_images/binder_badge_logo.svg" width="150px" /></a> |
|
0 commit comments