Skip to content

Commit 1a87024

Browse files
author
Github Actions
committed
Ravin Kohli: [FIX] Documentation and docker workflow file (#449)
1 parent 32a84e3 commit 1a87024

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

41 files changed

+280
-245
lines changed
Binary file not shown.
Binary file not shown.
Loading
Loading
Loading
Loading

development/_modules/autoPyTorch/api/time_series_forecasting.html

Lines changed: 21 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -142,6 +142,7 @@ <h1>Source code for autoPyTorch.api.time_series_forecasting</h1><div class="high
142142
<div class="viewcode-block" id="TimeSeriesForecastingTask"><a class="viewcode-back" href="../../../api.html#autoPyTorch.api.time_series_forecasting.TimeSeriesForecastingTask">[docs]</a><span class="k">class</span> <span class="nc">TimeSeriesForecastingTask</span><span class="p">(</span><span class="n">BaseTask</span><span class="p">):</span>
143143
<span class="sd">&quot;&quot;&quot;</span>
144144
<span class="sd"> Time Series Forecasting API to the pipelines.</span>
145+
145146
<span class="sd"> Args:</span>
146147
<span class="sd"> seed (int):</span>
147148
<span class="sd"> seed to be used for reproducibility.</span>
@@ -367,6 +368,7 @@ <h1>Source code for autoPyTorch.api.time_series_forecasting</h1><div class="high
367368
<span class="n">Y</span><span class="o">=</span><span class="n">y_train</span><span class="p">,</span>
368369
<span class="n">X_test</span><span class="o">=</span><span class="n">X_test</span><span class="p">,</span>
369370
<span class="n">Y_test</span><span class="o">=</span><span class="n">y_test</span><span class="p">,</span>
371+
<span class="n">dataset_name</span><span class="o">=</span><span class="n">dataset_name</span><span class="p">,</span>
370372
<span class="n">freq</span><span class="o">=</span><span class="n">freq</span><span class="p">,</span>
371373
<span class="n">start_times</span><span class="o">=</span><span class="n">start_times</span><span class="p">,</span>
372374
<span class="n">series_idx</span><span class="o">=</span><span class="n">series_idx</span><span class="p">,</span>
@@ -513,7 +515,25 @@ <h1>Source code for autoPyTorch.api.time_series_forecasting</h1><div class="high
513515
<span class="sd"> for each pipeline and results will be available via cv_results</span>
514516
<span class="sd"> precision (int), (default=32): Numeric precision used when loading</span>
515517
<span class="sd"> ensemble data. Can be either &#39;16&#39;, &#39;32&#39; or &#39;64&#39;.</span>
516-
<span class="sd"> disable_file_output (Union[bool, List]):</span>
518+
<span class="sd"> disable_file_output (Optional[List[Union[str, DisableFileOutputParameters]]]):</span>
519+
<span class="sd"> Used as a list to pass more fine-grained</span>
520+
<span class="sd"> information on what to save. Must be a member of `DisableFileOutputParameters`.</span>
521+
<span class="sd"> Allowed elements in the list are:</span>
522+
523+
<span class="sd"> + `y_optimization`:</span>
524+
<span class="sd"> do not save the predictions for the optimization set,</span>
525+
<span class="sd"> which would later on be used to build an ensemble. Note that SMAC</span>
526+
<span class="sd"> optimizes a metric evaluated on the optimization set.</span>
527+
<span class="sd"> + `pipeline`:</span>
528+
<span class="sd"> do not save any individual pipeline files</span>
529+
<span class="sd"> + `pipelines`:</span>
530+
<span class="sd"> In case of cross validation, disables saving the joint model of the</span>
531+
<span class="sd"> pipelines fit on each fold.</span>
532+
<span class="sd"> + `y_test`:</span>
533+
<span class="sd"> do not save the predictions for the test set.</span>
534+
<span class="sd"> + `all`:</span>
535+
<span class="sd"> do not save any of the above.</span>
536+
<span class="sd"> For more information check `autoPyTorch.evaluation.utils.DisableFileOutputParameters`.</span>
517537
<span class="sd"> load_models (bool), (default=True): Whether to load the</span>
518538
<span class="sd"> models after fitting AutoPyTorch.</span>
519539
<span class="sd"> suggested_init_models: Optional[List[str]]</span>

development/_sources/examples/20_basics/example_image_classification.rst.txt

Lines changed: 13 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -35,22 +35,22 @@ Image Classification
3535
3636
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
3737
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw/train-images-idx3-ubyte.gz
38-
0%| | 0/26421880 [00:00<?, ?it/s] 0%| | 65536/26421880 [00:00<01:10, 374644.14it/s] 1%| | 163840/26421880 [00:00<00:41, 631006.64it/s] 2%|1 | 425984/26421880 [00:00<00:22, 1140468.14it/s] 5%|4 | 1310720/26421880 [00:00<00:07, 3470288.06it/s] 13%|#3 | 3473408/26421880 [00:00<00:03, 7608945.79it/s] 31%|###1 | 8290304/26421880 [00:00<00:00, 18277293.49it/s] 47%|####7 | 12419072/26421880 [00:00<00:00, 21138658.10it/s] 66%|######5 | 17399808/26421880 [00:01<00:00, 28063442.88it/s] 82%|########1 | 21561344/26421880 [00:01<00:00, 27247015.88it/s] 100%|##########| 26421880/26421880 [00:01<00:00, 19940201.20it/s]
38+
0%| | 0/26421880 [00:00<?, ?it/s] 0%| | 32768/26421880 [00:00<01:52, 235602.90it/s] 0%| | 65536/26421880 [00:00<01:52, 234351.38it/s] 0%| | 131072/26421880 [00:00<01:17, 340594.04it/s] 1%| | 229376/26421880 [00:00<00:54, 483036.36it/s] 2%|1 | 458752/26421880 [00:00<00:28, 898436.87it/s] 3%|3 | 917504/26421880 [00:00<00:14, 1705017.51it/s] 7%|7 | 1867776/26421880 [00:00<00:07, 3360695.16it/s] 14%|#4 | 3702784/26421880 [00:01<00:03, 6451569.09it/s] 26%|##5 | 6750208/26421880 [00:01<00:01, 11225603.32it/s] 37%|###7 | 9863168/26421880 [00:01<00:01, 14590423.72it/s] 49%|####9 | 13008896/26421880 [00:01<00:00, 16972192.00it/s] 61%|###### | 16056320/26421880 [00:01<00:00, 18420560.72it/s] 72%|#######1 | 19005440/26421880 [00:01<00:00, 19207823.64it/s] 84%|########3 | 22085632/26421880 [00:01<00:00, 20031175.65it/s] 95%|#########5| 25231360/26421880 [00:02<00:00, 20738665.14it/s] 100%|##########| 26421880/26421880 [00:02<00:00, 12457424.40it/s]
3939
Extracting ../datasets/FashionMNIST/raw/train-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw
4040
4141
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
4242
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw/train-labels-idx1-ubyte.gz
43-
0%| | 0/29515 [00:00<?, ?it/s] 100%|##########| 29515/29515 [00:00<00:00, 333885.02it/s]
43+
0%| | 0/29515 [00:00<?, ?it/s] 100%|##########| 29515/29515 [00:00<00:00, 205829.78it/s] 100%|##########| 29515/29515 [00:00<00:00, 205327.60it/s]
4444
Extracting ../datasets/FashionMNIST/raw/train-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw
4545

4646
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
4747
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw/t10k-images-idx3-ubyte.gz
48-
0%| | 0/4422102 [00:00<?, ?it/s] 1%|1 | 65536/4422102 [00:00<00:11, 376169.94it/s] 5%|5 | 229376/4422102 [00:00<00:05, 709739.76it/s] 20%|## | 884736/4422102 [00:00<00:01, 2110100.56it/s] 72%|#######1 | 3178496/4422102 [00:00<00:00, 7798515.95it/s] 100%|##########| 4422102/4422102 [00:00<00:00, 6345915.96it/s]
48+
0%| | 0/4422102 [00:00<?, ?it/s] 1%| | 32768/4422102 [00:00<00:18, 233477.25it/s] 1%|1 | 65536/4422102 [00:00<00:18, 232894.04it/s] 3%|2 | 131072/4422102 [00:00<00:12, 339241.27it/s] 5%|5 | 229376/4422102 [00:00<00:08, 480773.14it/s] 10%|9 | 425984/4422102 [00:00<00:04, 811302.76it/s] 20%|## | 884736/4422102 [00:00<00:02, 1643749.67it/s] 39%|###9 | 1736704/4422102 [00:00<00:00, 3085506.46it/s] 79%|#######8 | 3473408/4422102 [00:01<00:00, 6031981.20it/s] 100%|##########| 4422102/4422102 [00:01<00:00, 3921463.52it/s]
4949
Extracting ../datasets/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw
5050

5151
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
5252
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz
53-
0%| | 0/5148 [00:00<?, ?it/s] 100%|##########| 5148/5148 [00:00<00:00, 42254945.19it/s]
53+
0%| | 0/5148 [00:00<?, ?it/s] 100%|##########| 5148/5148 [00:00<00:00, 37947762.73it/s]
5454
Extracting ../datasets/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw
5555

5656
Pipeline CS:
@@ -85,25 +85,23 @@ Image Classification
8585
Pipeline Random Config:
8686
________________________________________
8787
Configuration(values={
88-
'image_augmenter:GaussianBlur:sigma_min': 0.5986757047003219,
89-
'image_augmenter:GaussianBlur:sigma_offset': 1.6405649910315916,
88+
'image_augmenter:GaussianBlur:sigma_min': 1.800750044920493,
89+
'image_augmenter:GaussianBlur:sigma_offset': 0.0008507475449754942,
9090
'image_augmenter:GaussianBlur:use_augmenter': True,
91-
'image_augmenter:GaussianNoise:sigma_offset': 2.8469479270927325,
92-
'image_augmenter:GaussianNoise:use_augmenter': True,
91+
'image_augmenter:GaussianNoise:use_augmenter': False,
9392
'image_augmenter:RandomAffine:use_augmenter': False,
94-
'image_augmenter:RandomCutout:p': 0.9357778536297661,
95-
'image_augmenter:RandomCutout:use_augmenter': True,
96-
'image_augmenter:Resize:use_augmenter': True,
97-
'image_augmenter:ZeroPadAndCrop:percent': 0.013520874232656022,
98-
'normalizer:__choice__': 'NoNormalizer',
93+
'image_augmenter:RandomCutout:use_augmenter': False,
94+
'image_augmenter:Resize:use_augmenter': False,
95+
'image_augmenter:ZeroPadAndCrop:percent': 0.3938396231176561,
96+
'normalizer:__choice__': 'ImageNormalizer',
9997
})
10098

10199
Fitting the pipeline...
102100
________________________________________
103101
ImageClassificationPipeline
104102
________________________________________
105103
0-) normalizer:
106-
NoNormalizer
104+
ImageNormalizer
107105

108106
1-) preprocessing:
109107
EarlyPreprocessing
@@ -175,7 +173,7 @@ Image Classification
175173
176174
.. rst-class:: sphx-glr-timing
177175

178-
**Total running time of the script:** ( 0 minutes 4.898 seconds)
176+
**Total running time of the script:** ( 0 minutes 7.321 seconds)
179177

180178

181179
.. _sphx_glr_download_examples_20_basics_example_image_classification.py:

development/_sources/examples/20_basics/example_tabular_classification.rst.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -134,7 +134,7 @@ Search for an ensemble of machine learning algorithms
134134
.. code-block:: none
135135
136136
137-
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f755cba6820>
137+
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f2407c75af0>
138138
139139
140140
@@ -190,7 +190,7 @@ Print the final ensemble performance
190190
191191
.. rst-class:: sphx-glr-timing
192192

193-
**Total running time of the script:** ( 5 minutes 18.288 seconds)
193+
**Total running time of the script:** ( 5 minutes 24.577 seconds)
194194

195195

196196
.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py:

development/_sources/examples/20_basics/example_tabular_regression.rst.txt

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -125,7 +125,7 @@ Search for an ensemble of machine learning algorithms
125125
.. code-block:: none
126126
127127
128-
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f75fa043ee0>
128+
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f248d0d5d90>
129129
130130
131131
@@ -167,7 +167,7 @@ Print the final ensemble performance
167167
| 2 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
168168
| 3 | None | LGBMLearner | 0.04 |
169169
autoPyTorch results:
170-
Dataset name: 9e644a32-01dc-11ed-881e-fb671a47a91f
170+
Dataset name: 59922def-0351-11ed-8824-d5cce4119db9
171171
Optimisation Metric: r2
172172
Best validation score: 0.8670098636440993
173173
Number of target algorithm runs: 24
@@ -183,7 +183,7 @@ Print the final ensemble performance
183183
184184
.. rst-class:: sphx-glr-timing
185185

186-
**Total running time of the script:** ( 5 minutes 35.079 seconds)
186+
**Total running time of the script:** ( 5 minutes 36.793 seconds)
187187

188188

189189
.. _sphx_glr_download_examples_20_basics_example_tabular_regression.py:

development/_sources/examples/20_basics/example_time_series_forecasting.rst.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -150,7 +150,7 @@ Search for an ensemble of machine learning algorithms
150150
151151
.. rst-class:: sphx-glr-timing
152152

153-
**Total running time of the script:** ( 1 minutes 3.424 seconds)
153+
**Total running time of the script:** ( 1 minutes 3.199 seconds)
154154

155155

156156
.. _sphx_glr_download_examples_20_basics_example_time_series_forecasting.py:

development/_sources/examples/20_basics/sg_execution_times.rst.txt

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -5,14 +5,14 @@
55

66
Computation times
77
=================
8-
**12:01.689** total execution time for **examples_20_basics** files:
8+
**12:11.890** total execution time for **examples_20_basics** files:
99

1010
+----------------------------------------------------------------------------------------------------------------+-----------+--------+
11-
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:35.079 | 0.0 MB |
11+
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:36.793 | 0.0 MB |
1212
+----------------------------------------------------------------------------------------------------------------+-----------+--------+
13-
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 05:18.288 | 0.0 MB |
13+
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 05:24.577 | 0.0 MB |
1414
+----------------------------------------------------------------------------------------------------------------+-----------+--------+
15-
| :ref:`sphx_glr_examples_20_basics_example_time_series_forecasting.py` (``example_time_series_forecasting.py``) | 01:03.424 | 0.0 MB |
15+
| :ref:`sphx_glr_examples_20_basics_example_time_series_forecasting.py` (``example_time_series_forecasting.py``) | 01:03.199 | 0.0 MB |
1616
+----------------------------------------------------------------------------------------------------------------+-----------+--------+
17-
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:04.898 | 0.0 MB |
17+
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:07.321 | 0.0 MB |
1818
+----------------------------------------------------------------------------------------------------------------+-----------+--------+

0 commit comments

Comments
 (0)