Skip to content

Commit 0d61dba

Browse files
committed
flake8 fix
1 parent 3886f06 commit 0d61dba

File tree

4 files changed

+6
-8
lines changed

4 files changed

+6
-8
lines changed

autoPyTorch/pipeline/components/preprocessing/time_series_preprocessing/scaling/utils.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -135,7 +135,7 @@ def transform(self, X: Union[pd.DataFrame, np.ndarray]) -> Union[pd.DataFrame, n
135135
X_abs = np.abs(X)
136136
mean_abs_ = X_abs.mean(0, keepdims=True)
137137
scale = np.where(mean_abs_ == 0.0, np.max(X_abs), mean_abs_)
138-
scale[scale < VERY_SMALL_VALUE] = 1
138+
scale[scale < VERY_SMALL_VALUE] = 1
139139
return X / scale
140140

141141
elif self.mode == "none":

autoPyTorch/pipeline/components/setup/forecasting_target_scaling/utils.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,7 @@
66

77
from autoPyTorch.constants import VERY_SMALL_VALUE
88

9+
910
# Similar to / inspired by
1011
# https://github.com/tslearn-team/tslearn/blob/a3cf3bf/tslearn/preprocessing/preprocessing.py
1112
class TargetScaler(BaseEstimator):

test/test_pipeline/components/preprocessing/forecasting/test_scaling.py

Lines changed: 0 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -38,13 +38,10 @@ def setUp(self) -> None:
3838
'numerical_columns': numerical_columns,
3939
'static_features': self.static_features,
4040
'is_small_preprocess': True}
41-
very_small_values = np.array([[1e-10, 0., 1e-15],
42-
[1e-10, 0., 1e-15]])
4341

4442
self.small_data = pd.DataFrame(np.array([[1e-10, 0., 1e-15],
4543
[-1e-10, 0., +1e-15]]), columns=columns, index=[0] * 2)
4644

47-
4845
def test_base_and_standard_scaler(self):
4946
scaler_component = BaseScaler(scaling_mode='standard')
5047
X = {

test/test_pipeline/components/setup/forecasting/test_forecasting_target_scaling.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -96,7 +96,7 @@ def test_target_mean_abs_scalar(self):
9696
self.assertIsNone(loc_full)
9797

9898
_, _, _, scale = scalar(
99-
torch.Tensor([[1e-10, 1e-10, 1e-10],[1e-15,1e-15, 1e-15]]).reshape([2, 3, 1])
99+
torch.Tensor([[1e-10, 1e-10, 1e-10], [1e-15, 1e-15, 1e-15]]).reshape([2, 3, 1])
100100
)
101101
self.assertTrue(torch.equal(scale.flatten(), torch.Tensor([1e-10, 1.])))
102102

@@ -184,7 +184,7 @@ def test_target_standard_scalar(self):
184184
self.assertTrue(torch.equal(scale, scale_full))
185185

186186
_, _, _, scale = scalar(
187-
torch.Tensor([[1e-10, -1e-10, 1e-10],[1e-15, -1e-15, 1e-15]]).reshape([2, 3, 1])
187+
torch.Tensor([[1e-10, -1e-10, 1e-10], [1e-15, -1e-15, 1e-15]]).reshape([2, 3, 1])
188188
)
189189
self.assertTrue(torch.all(torch.isclose(scale.flatten(), torch.Tensor([1.1547e-10, 1.]))))
190190

@@ -256,7 +256,7 @@ def test_target_min_max_scalar(self):
256256
self.assertTrue(torch.equal(scale, scale_full))
257257

258258
_, _, _, scale = scalar(
259-
torch.Tensor([[1e-10, 1e-10, 1e-10],[1e-15,1e-15, 1e-15]]).reshape([2, 3, 1])
259+
torch.Tensor([[1e-10, 1e-10, 1e-10], [1e-15, 1e-15, 1e-15]]).reshape([2, 3, 1])
260260
)
261261
self.assertTrue(torch.equal(scale.flatten(), torch.Tensor([1e-10, 1.])))
262262

@@ -326,6 +326,6 @@ def test_target_max_abs_scalar(self):
326326
self.assertTrue(torch.equal(scale, scale_full))
327327

328328
_, _, _, scale = scalar(
329-
torch.Tensor([[1e-10, 1e-10, 1e-10],[1e-15,1e-15, 1e-15]]).reshape([2, 3, 1])
329+
torch.Tensor([[1e-10, 1e-10, 1e-10], [1e-15, 1e-15, 1e-15]]).reshape([2, 3, 1])
330330
)
331331
self.assertTrue(torch.equal(scale.flatten(), torch.Tensor([1e-10, 1.])))

0 commit comments

Comments
 (0)