@@ -36,7 +36,7 @@ with AutoPyTorch
3636
3737 .. code-block :: none
3838
39- <smac.runhistory.runhistory.RunHistory object at 0x7f983433d160 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
39+ <smac.runhistory.runhistory.RunHistory object at 0x7fe9245bcd60 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
4040 data_loader:batch_size, Value: 32
4141 encoder:__choice__, Value: 'OneHotEncoder'
4242 feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -77,7 +77,7 @@ with AutoPyTorch
7777 scaler:__choice__, Value: 'StandardScaler'
7878 trainer:StandardTrainer:weighted_loss, Value: True
7979 trainer:__choice__, Value: 'StandardTrainer'
80- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.00208282470703125 , budget=0), TrajEntry(train_perf=0.16959064327485385 , incumbent_id=1, incumbent=Configuration:
80+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0018763542175292969 , budget=0), TrajEntry(train_perf=0.15204678362573099 , incumbent_id=1, incumbent=Configuration:
8181 data_loader:batch_size, Value: 32
8282 encoder:__choice__, Value: 'OneHotEncoder'
8383 feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -118,7 +118,7 @@ with AutoPyTorch
118118 scaler:__choice__, Value: 'StandardScaler'
119119 trainer:StandardTrainer:weighted_loss, Value: True
120120 trainer:__choice__, Value: 'StandardTrainer'
121- , ta_runs=1, ta_time_used=4.665428161621094 , wallclock_time=6.140820026397705 , budget=5.555555555555555), TrajEntry(train_perf=0.14619883040935677 , incumbent_id=2, incumbent=Configuration:
121+ , ta_runs=1, ta_time_used=4.428625822067261 , wallclock_time=5.859556198120117 , budget=5.555555555555555), TrajEntry(train_perf=0.11695906432748537 , incumbent_id=2, incumbent=Configuration:
122122 data_loader:batch_size, Value: 224
123123 encoder:__choice__, Value: 'OneHotEncoder'
124124 feature_preprocessor:KernelPCA:gamma, Value: 0.6217858094449208
@@ -151,19 +151,19 @@ with AutoPyTorch
151151 trainer:MixUpTrainer:alpha, Value: 0.7490557199071863
152152 trainer:MixUpTrainer:weighted_loss, Value: False
153153 trainer:__choice__, Value: 'MixUpTrainer'
154- , ta_runs=12 , ta_time_used=105.31449437141418 , wallclock_time=135.89934992790222 , budget=16.666666666666664 )]
155- {'accuracy': 0.884393063583815 }
156- | | Preprocessing | Estimator | Weight |
157- |---:|:------------------------------------------------------------------ |:-------------------------------------------------------------------|---------:|
158- | 0 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone ,FullyConnectedHead,nn.Sequential | 0.42 |
159- | 1 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone ,FullyConnectedHead,nn.Sequential | 0.14 |
160- | 2 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone ,FullyConnectedHead,nn.Sequential | 0.14 |
161- | 3 | None | KNNClassifier | 0.1 |
162- | 4 | None | RFClassifier | 0.08 |
163- | 5 | SimpleImputer,OneHotEncoder,Normalizer,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
164- | 6 | None | ExtraTreesClassifier | 0.04 |
165- | 7 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
166- | 8 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
154+ , ta_runs=4 , ta_time_used=35.06738233566284 , wallclock_time=42.592618465423584 , budget=5.555555555555555 )]
155+ {'accuracy': 0.8786127167630058 }
156+ | | Preprocessing | Estimator | Weight |
157+ |---:|:-----------------------------------------------------|:-------------------------------------------------------------------|---------:|
158+ | 0 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone ,FullyConnectedHead,nn.Sequential | 0.2 |
159+ | 1 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone ,FullyConnectedHead,nn.Sequential | 0.2 |
160+ | 2 | SimpleImputer,NoEncoder,NoScaler,PolynomialFeatures | no embedding,ResNetBackbone ,FullyConnectedHead,nn.Sequential | 0.18 |
161+ | 3 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
162+ | 4 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
163+ | 5 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
164+ | 6 | SimpleImputer,NoEncoder,NoScaler,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
165+ | 7 | None | ExtraTreesClassifier | 0.02 |
166+ | 8 | None | KNNClassifier | 0.02 |
167167
168168
169169
@@ -255,7 +255,7 @@ with AutoPyTorch
255255
256256 .. rst-class :: sphx-glr-timing
257257
258- **Total running time of the script: ** ( 9 minutes 10.157 seconds)
258+ **Total running time of the script: ** ( 9 minutes 5.493 seconds)
259259
260260
261261.. _sphx_glr_download_examples_example_tabular_classification.py :
0 commit comments