- Introduction
- System Setup
- Asone Library Installation
Asone is a python wrapper for multiple detection and tracking algorithms all at one place. Different trackers such as ByteTrack
, DeepSort
or NorFair
can be integrated with different versions of YOLO
with minimum lines of code.
This python wrapper provides yolo models in both ONNX
and PyTorch
versions.
Usage:
pip install asone
import asone
from asone import ASOne
dt_obj = ASOne(tracker=asone.BYTETRACK, detector=asone.YOLOX_DARKNET_PYTORCH, use_cuda=True)
dt_obj.start_tracking([VIDEO_PATH])
VIDEO_PATH
= Path of input video
- Make sure you have docker installed in your system. if not reffer to Docker Setup
- Clone the repo
git clone https://github.com/axcelerateai/asone.git
cd asone
- Run docker coompose command.
# if you wanna test on gpu system
docker compose run linux-gpu
# if you wanna test on cpu system
docker compose run linux
- In docker terminal.
# if using gpu
python main.py [VIDEO_PATH]
# if using cpu
python main.py [VIDEO_PATH] --cpu
- Clone the repo
git clone https://github.com/axcelerateai/asone.git
cd asone
- Create virtual env.
python3 -m venv .env
- Activate venv
# linux
source .env/bin/activate
# Windows
.env\Scripts\activate
- Intall pre-requisite
pip install numpy Cython
# for windows
pip install -e git+https://github.com/samson-wang/cython_bbox.git#egg=cython-bbox
# for linux
pip install cython-bbox
- Install torch
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
- Install asone
pip install .
- Test it by runiing main.py
# if using gpu
python main.py [VIDEO_PATH]
# if using cpu
python main.py [VIDEO_PATH] --cpu