forked from Sentdex/pygta5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
217 lines (166 loc) · 6.85 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import numpy as np
from grabscreen import grab_screen
import cv2
import time
from directkeys import PressKey,ReleaseKey, W, A, S, D
from models import inception_v3 as googlenet
from getkeys import key_check
from collections import deque, Counter
import random
from statistics import mode,mean
import numpy as np
from vjoy import vJoy, ultimate_release
vj = vJoy()
GAME_WIDTH = 1920
GAME_HEIGHT = 1080
how_far_remove = 800
rs = (20,15)
log_len = 25
motion_req = 800
motion_log = deque(maxlen=log_len)
WIDTH = 160
HEIGHT = 90
LR = 1e-3
EPOCHS = 10
DELTA_COUNT_THRESHOLD = 1000
def delta_images(t0, t1, t2):
d1 = cv2.absdiff(t2, t0)
return d1
choices = deque([], maxlen=5)
hl_hist = 250
choice_hist = deque([], maxlen=hl_hist)
w = [1,0,0,0,0,0,0,0,0]
s = [0,1,0,0,0,0,0,0,0]
a = [0,0,1,0,0,0,0,0,0]
d = [0,0,0,1,0,0,0,0,0]
wa = [0,0,0,0,1,0,0,0,0]
wd = [0,0,0,0,0,1,0,0,0]
sa = [0,0,0,0,0,0,1,0,0]
sd = [0,0,0,0,0,0,0,1,0]
nk = [0,0,0,0,0,0,0,0,1]
model = googlenet(WIDTH, HEIGHT, 3, LR, output=9)
MODEL_NAME = 'trained_models/googlenet/pygta5-FPV-color-googlenet_color-0.001-LR-171-files-balanced-v12.model'
model.load(MODEL_NAME)
print('We have loaded a previous model!!!!')
def main():
'''
with the z axis, your %s are out of 32,786
with the x and y, your %s are out of 16393
...so left = 16393 - (some % of 16393) ... right = 16393 + (some % of 16393)
'''
################
XYRANGE = 16393
ZRANGE = 32786
wAxisX = 16393
wAxisY = 16393
wAxisZ = 0
wAxisXRot = 16393
wAxisYRot = 16393
wAxisZRot = 0
last_time = time.time()
for i in list(range(4))[::-1]:
print(i+1)
time.sleep(1)
#how_long_since_move = 0
paused = False
mode_choice = 0
screen = grab_screen(region=(0,40,GAME_WIDTH,GAME_HEIGHT+40))
screen = cv2.cvtColor(screen, cv2.COLOR_BGR2RGB)
prev = cv2.resize(screen, (160,90))
t_minus = prev
t_now = prev
t_plus = prev
while(True):
if not paused:
screen = grab_screen(region=(0,40,GAME_WIDTH,GAME_HEIGHT+40))
screen = cv2.cvtColor(screen, cv2.COLOR_BGR2RGB)
last_time = time.time()
screen = cv2.resize(screen, (160,90))
delta_view = delta_images(t_minus, t_now, t_plus)
retval, delta_view = cv2.threshold(delta_view, 16, 255, 3)
cv2.normalize(delta_view, delta_view, 0, 255, cv2.NORM_MINMAX)
img_count_view = cv2.cvtColor(delta_view, cv2.COLOR_RGB2GRAY)
delta_count = cv2.countNonZero(img_count_view)
dst = cv2.addWeighted(screen,1.0, delta_view,0.6,0)
now=time.time()
delta_count_last = delta_count
t_minus = t_now
t_now = t_plus
t_plus = screen
t_plus = cv2.blur(t_plus,(4,4))
o_prediction = model.predict([screen.reshape(160,90,3)])[0]
# w s a d wa wd sa sd nk
prediction = np.array(o_prediction) * np.array([4.5, 0.1, 0.1, 0.1, 1.8, 1.8, 0.5, 0.5, 0.2])
## w s a d wa wd sa sd nk
joy_choices = np.array(o_prediction) * np.array([4.5, 2.0, 1.0, 1.0, 1.8, 1.8, 1.0, 1.0, 1.0])
# could in theory be a negative.
# w s sa sd nk
throttle = joy_choices[0] - joy_choices[1] - joy_choices[6] - joy_choices[7] - joy_choices[8]
# - is left.. .+ is right. (16393 + (-/+ up to 16393))
# a wa sa d wd sd
turn = (-1*joy_choices[2]) +(-1*joy_choices[4]) +(-1*joy_choices[6]) + joy_choices[3] + joy_choices[5] + joy_choices[7]
if throttle < -1 : throttle = -1
elif throttle > 1 : throttle = 1
if turn < -1 : turn = -1
elif turn > 1 : turn = 1
motion_log.append(delta_count)
motion_avg = round(mean(motion_log),3)
fps = 1 / round(time.time()-last_time, 3)
if throttle > 0:
vj.open()
joystickPosition = vj.generateJoystickPosition(wAxisZ=int(ZRANGE*throttle),wAxisX=int(XYRANGE + (turn*XYRANGE)))
vj.update(joystickPosition)
time.sleep(0.001)
vj.close()
print('FPS {}. Motion: {}. ThumbXaxis: {}. Throttle: {}. Brake: {}'.format(fps , motion_avg, int(XYRANGE + (turn*XYRANGE)), int(ZRANGE*throttle),0))
else:
vj.open()
joystickPosition = vj.generateJoystickPosition(wAxisZRot=int(-1*(ZRANGE*throttle)),wAxisX=int(XYRANGE + (turn*XYRANGE)))
vj.update(joystickPosition)
time.sleep(0.001)
vj.close()
print('FPS {}. Motion: {}. ThumbXaxis: {}. Throttle: {}. Brake: {}'.format(fps , motion_avg, int(XYRANGE + (turn*XYRANGE)), 0, int(-1*(ZRANGE*throttle))))
mode_choice = np.argmax(prediction)
if motion_avg < motion_req and len(motion_log) >= log_len:
print('WERE PROBABLY STUCK FFS, initiating some evasive maneuvers.')
# 0 = reverse straight, turn left out
# 1 = reverse straight, turn right out
# 2 = reverse left, turn right out
# 3 = reverse right, turn left out
quick_choice = random.randrange(0,4)
if quick_choice == 0:
reverse()
time.sleep(random.uniform(1,2))
forward_left()
time.sleep(random.uniform(1,2))
elif quick_choice == 1:
reverse()
time.sleep(random.uniform(1,2))
forward_right()
time.sleep(random.uniform(1,2))
elif quick_choice == 2:
reverse_left()
time.sleep(random.uniform(1,2))
forward_right()
time.sleep(random.uniform(1,2))
elif quick_choice == 3:
reverse_right()
time.sleep(random.uniform(1,2))
forward_left()
time.sleep(random.uniform(1,2))
for i in range(log_len-2):
del motion_log[0]
keys = key_check()
# p pauses game and can get annoying.
if 'T' in keys:
ultimate_release()
if paused:
paused = False
time.sleep(1)
else:
paused = True
ReleaseKey(A)
ReleaseKey(W)
ReleaseKey(D)
time.sleep(1)
main()