@@ -13083,7 +13083,7 @@ <h1 id="1.-Create-a-Model-in-Python">1. Create a Model in Python<a class="anchor
1308313083</ div >
1308413084< div class ="cell border-box-sizing code_cell rendered ">
1308513085< div class ="input ">
13086- < div class ="prompt input_prompt "> In [ ]:</ div >
13086+ < div class ="prompt input_prompt "> In [1 ]:</ div >
1308713087< div class ="inner_cell ">
1308813088 < div class ="input_area ">
1308913089< div class =" highlight hl-ipython3 "> < pre > < span > </ span > < span class ="c1 "> # Sample Data</ span >
@@ -13098,7 +13098,7 @@ <h1 id="1.-Create-a-Model-in-Python">1. Create a Model in Python<a class="anchor
1309813098</ div >
1309913099< div class ="cell border-box-sizing code_cell rendered ">
1310013100< div class ="input ">
13101- < div class ="prompt input_prompt "> In [99 ]:</ div >
13101+ < div class ="prompt input_prompt "> In [2 ]:</ div >
1310213102< div class ="inner_cell ">
1310313103 < div class ="input_area ">
1310413104< div class =" highlight hl-ipython3 "> < pre > < span > </ span > < span class ="c1 "> # Test the clustering model on sample data</ span >
@@ -13121,7 +13121,7 @@ <h1 id="1.-Create-a-Model-in-Python">1. Create a Model in Python<a class="anchor
1312113121
1312213122< div class ="output_area ">
1312313123
13124- < div class ="prompt output_prompt "> Out[99 ]:</ div >
13124+ < div class ="prompt output_prompt "> Out[2 ]:</ div >
1312513125
1312613126
1312713127
@@ -13145,7 +13145,7 @@ <h1 id="2.-Deploy-the-Model-on-TabPy-Server">2. Deploy the Model on TabPy Server
1314513145</ div >
1314613146< div class ="cell border-box-sizing code_cell rendered ">
1314713147< div class ="input ">
13148- < div class ="prompt input_prompt "> In [73 ]:</ div >
13148+ < div class ="prompt input_prompt "> In [3 ]:</ div >
1314913149< div class ="inner_cell ">
1315013150 < div class ="input_area ">
1315113151< div class =" highlight hl-ipython3 "> < pre > < span > </ span > < span class ="c1 "> # Import tabpy client for deployment</ span >
@@ -13159,7 +13159,7 @@ <h1 id="2.-Deploy-the-Model-on-TabPy-Server">2. Deploy the Model on TabPy Server
1315913159</ div >
1316013160< div class ="cell border-box-sizing code_cell rendered ">
1316113161< div class ="input ">
13162- < div class ="prompt input_prompt "> In [75 ]:</ div >
13162+ < div class ="prompt input_prompt "> In [4 ]:</ div >
1316313163< div class ="inner_cell ">
1316413164 < div class ="input_area ">
1316513165< div class =" highlight hl-ipython3 "> < pre > < span > </ span > < span class ="c1 "> # Server URL (This would be the host and port on which you are running the TabPy server)</ span >
@@ -13173,7 +13173,7 @@ <h1 id="2.-Deploy-the-Model-on-TabPy-Server">2. Deploy the Model on TabPy Server
1317313173</ div >
1317413174< div class ="cell border-box-sizing code_cell rendered ">
1317513175< div class ="input ">
13176- < div class ="prompt input_prompt "> In [76 ]:</ div >
13176+ < div class ="prompt input_prompt "> In [6 ]:</ div >
1317713177< div class ="inner_cell ">
1317813178 < div class ="input_area ">
1317913179< div class =" highlight hl-ipython3 "> < pre > < span > </ span > < span class ="c1 "> # Define the function tested above</ span >
@@ -13183,7 +13183,7 @@ <h1 id="2.-Deploy-the-Model-on-TabPy-Server">2. Deploy the Model on TabPy Server
1318313183 < span class ="kn "> from</ span > < span class ="nn "> sklearn.preprocessing</ span > < span class ="kn "> import</ span > < span class ="n "> StandardScaler</ span >
1318413184 < span class ="n "> X</ span > < span class ="o "> =</ span > < span class ="n "> np</ span > < span class ="o "> .</ span > < span class ="n "> column_stack</ span > < span class ="p "> ([</ span > < span class ="n "> x</ span > < span class ="p "> ,</ span > < span class ="n "> y</ span > < span class ="p "> ])</ span >
1318513185 < span class ="n "> X</ span > < span class ="o "> =</ span > < span class ="n "> StandardScaler</ span > < span class ="p "> ()</ span > < span class ="o "> .</ span > < span class ="n "> fit_transform</ span > < span class ="p "> (</ span > < span class ="n "> X</ span > < span class ="p "> )</ span >
13186- < span class ="n "> db</ span > < span class ="o "> =</ span > < span class ="n "> DBSCAN</ span > < span class ="p "> (</ span > < span class ="n "> eps</ span > < span class ="o "> =</ span > < span class ="mf " > 0.3 </ span > < span class ="p "> ,</ span > < span class ="n "> min_samples</ span > < span class ="o "> =</ span > < span class ="mi "> 3</ span > < span class ="p "> )</ span > < span class ="o "> .</ span > < span class ="n "> fit</ span > < span class ="p "> (</ span > < span class ="n "> X</ span > < span class ="p "> )</ span >
13186+ < span class ="n "> db</ span > < span class ="o "> =</ span > < span class ="n "> DBSCAN</ span > < span class ="p "> (</ span > < span class ="n "> eps</ span > < span class ="o "> =</ span > < span class ="mi " > 1 </ span > < span class ="p "> ,</ span > < span class ="n "> min_samples</ span > < span class ="o "> =</ span > < span class ="mi "> 3</ span > < span class ="p "> )</ span > < span class ="o "> .</ span > < span class ="n "> fit</ span > < span class ="p "> (</ span > < span class ="n "> X</ span > < span class ="p "> )</ span >
1318713187 < span class ="k "> return</ span > < span class ="n "> db</ span > < span class ="o "> .</ span > < span class ="n "> labels_</ span > < span class ="o "> .</ span > < span class ="n "> tolist</ span > < span class ="p "> ()</ span >
1318813188</ pre > </ div >
1318913189
@@ -13194,7 +13194,7 @@ <h1 id="2.-Deploy-the-Model-on-TabPy-Server">2. Deploy the Model on TabPy Server
1319413194</ div >
1319513195< div class ="cell border-box-sizing code_cell rendered ">
1319613196< div class ="input ">
13197- < div class ="prompt input_prompt "> In [78 ]:</ div >
13197+ < div class ="prompt input_prompt "> In [8 ]:</ div >
1319813198< div class ="inner_cell ">
1319913199 < div class ="input_area ">
1320013200< div class =" highlight hl-ipython3 "> < pre > < span > </ span > < span class ="c1 "> # Deploy the model to TabPy server</ span >
@@ -13226,7 +13226,7 @@ <h1 id="3.-Query-the-Model">3. Query the Model<a class="anchor-link" href="#3.-Q
1322613226</ div >
1322713227< div class ="cell border-box-sizing code_cell rendered ">
1322813228< div class ="input ">
13229- < div class ="prompt input_prompt "> In [98 ]:</ div >
13229+ < div class ="prompt input_prompt "> In [9 ]:</ div >
1323013230< div class ="inner_cell ">
1323113231 < div class ="input_area ">
1323213232< div class =" highlight hl-ipython3 "> < pre > < span > </ span > < span class ="c1 "> # Test the deployed model</ span >
@@ -13243,20 +13243,38 @@ <h1 id="3.-Query-the-Model">3. Query the Model<a class="anchor-link" href="#3.-Q
1324313243
1324413244< div class ="output_area ">
1324513245
13246- < div class ="prompt output_prompt "> Out[98 ]:</ div >
13246+ < div class ="prompt output_prompt "> Out[9 ]:</ div >
1324713247
1324813248
1324913249
1325013250
1325113251< div class ="output_text output_subarea output_execute_result ">
1325213252< pre > {'response': [0, 0, 0, 1, 1, 1, 1],
13253- 'version': 2 ,
13253+ 'version': 3 ,
1325413254 'model': 'clustering',
13255- 'uuid': 'c2b1479f-c1ff-4d0f-b7a9-b29ca4da31a2'}</ pre >
13255+ 'uuid': 'b13f4a0b-92ec-4a24-829b-c1071fd1c764'}</ pre >
13256+ </ div >
13257+
1325613258</ div >
1325713259
13260+ </ div >
1325813261</ div >
1325913262
13263+ </ div >
13264+ < div class ="cell border-box-sizing code_cell rendered ">
13265+ < div class ="input ">
13266+ < div class ="prompt input_prompt "> In [ ]:</ div >
13267+ < div class ="inner_cell ">
13268+ < div class ="input_area ">
13269+ < div class =" highlight hl-ipython3 "> < pre > < span > </ span > < span class ="c1 "> # Tableau code for calculated field:</ span >
13270+ < span class ="c1 "> # SCRIPT_INT("</ span >
13271+ < span class ="c1 "> # return tabpy.query('clustering', _arg1, _arg2)['response']</ span >
13272+ < span class ="c1 "> # ",</ span >
13273+ < span class ="c1 "> # SUM([Profit]), SUM([Sales])</ span >
13274+ < span class ="c1 "> # )</ span >
13275+ </ pre > </ div >
13276+
13277+ </ div >
1326013278</ div >
1326113279</ div >
1326213280
0 commit comments