forked from namisan/mt-dnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_distillation_data.py
36 lines (29 loc) · 1.29 KB
/
prepare_distillation_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import argparse
from data_utils import load_score_file
from experiments.exp_def import TaskDefs
parser = argparse.ArgumentParser()
parser.add_argument("--task_def", type=str, default="experiments/glue/glue_task_def.yml")
parser.add_argument("--task", type=str)
parser.add_argument("--add_soft_label", action="store_true",
help="without this option, we replace hard label with soft label")
parser.add_argument("--std_input", type=str)
parser.add_argument("--score", type=str)
parser.add_argument("--std_output", type=str)
args = parser.parse_args()
task_def_path = args.task_def
task = args.task
task_defs = TaskDefs(task_def_path)
n_class = task_defs.n_class_map[task]
sample_id_2_pred_score_seg_dic = load_score_file(args.score, n_class)
with open(args.std_output, "w", encoding="utf-8") as out_f:
for line in open(args.std_input, encoding="utf-8"):
fields = line.strip("\n").split("\t")
sample_id = fields[0]
target_score_idx = 1 # TODO: here we assume binary classification task
score = sample_id_2_pred_score_seg_dic[sample_id][1][target_score_idx]
if args.add_soft_label:
fields = fields[:2] + [str(score)] + fields[2:]
else:
fields[1] = str(score)
out_f.write("\t".join(fields))
out_f.write("\n")