-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet.py
126 lines (106 loc) · 3.76 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
"""
ResNet model found in
K. He, X. Zhang, S. Ren, and J. Sun.
Deep Residual Learning for Image Recognition.
CVPR, 2016.
Code modified from: @donlee99 https://github.com/donlee90/icarl
Author: Athan Zhang @athanzxyt
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
class ResBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1, shortcut=None):
super(ResBlock, self).__init__()
self.layers = nn.Sequential(
conv3x3(in_planes, planes, stride),
nn.BatchNorm2d(planes),
nn.ReLU(True),
conv3x3(planes, planes),
nn.BatchNorm2d(planes),
)
self.shortcut = shortcut
def forward(self, x):
residual = x
y = self.layers(x)
if self.shortcut:
residual = self.shortcut(x)
y += residual
y = F.relu(y)
return y
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1, shortcut=None):
super(Bottleneck, self).__init__()
self.layers = nn.Sequential(
nn.Conv2d(in_planes, planes, kernel_size=1, bias=False),
nn.BatchNorm2d(planes),
nn.ReLU(True),
nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(planes),
nn.ReLU(True),
nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False),
nn.BatchNorm2d(planes * 4),
)
self.shortcut = shortcut
def forward(self, x):
residual = x
y = self.layers(x)
if self.shortcut:
residual = self.shortcut(x)
y += residual
y = F.relu(y)
return y
class ResNet(nn.Module):
def __init__(self, block, nblocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 64
self.pre_layers = nn.Sequential(
conv3x3(3,64),
nn.BatchNorm2d(64),
nn.ReLU(True),
)
self.layer1 = self._make_layer(block, 64, nblocks[0])
self.layer2 = self._make_layer(block, 128, nblocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, nblocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, nblocks[3], stride=2)
self.avgpool = nn.AvgPool2d(4)
self.fc = nn.Linear(512*block.expansion, num_classes)
def _make_layer(self, block, planes, nblocks, stride=1):
shortcut = None
if stride != 1 or self.in_planes != planes * block.expansion:
shortcut = nn.Sequential(
nn.Conv2d(self.in_planes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.in_planes, planes, stride, shortcut))
self.in_planes = planes * block.expansion
for i in range(1, nblocks):
layers.append(block(self.in_planes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.pre_layers(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
# Different types of ResNets use different blocks
def resnet18():
return ResNet(ResBlock, [2,2,2,2])
def resnet34():
return ResNet(ResBlock, [3,4,6,3])
def resnet50():
return ResNet(Bottleneck, [3,4,6,3])
def resnet101():
return ResNet(Bottleneck, [3,4,23,3])
def resnet152():
return ResNet(Bottleneck, [3,8,36,3])