Skip to content

Latest commit

 

History

History
76 lines (55 loc) · 1.83 KB

README.md

File metadata and controls

76 lines (55 loc) · 1.83 KB

WaveNet

Yet another WaveNet implementation in PyTorch.

The purpose of this implementation is Well-structured, reusable and easily understandable.

Prerequisites

  • System

    • Linux or macOS
    • CPU or (NVIDIA GPU + CUDA CuDNN)
      • It can run on Single CPU/GPU or Multi GPUs.
    • Python 3
  • Libraries

    • PyTorch >= 0.3.0
    • librosa >= 0.5.1

Training

python train.py \
    --data_dir=./test/data \
    --output_dir=./outputs

Use python train.py --help to see more options.

Generating

It's just for testing. You need to modify for real world.

python generate.py \
    --model=./outputs/model \
    --seed=./test/data/helloworld.wav \
    --out=./output/helloworld.wav

Use python generate.py --help to see more options.

File structures

networks.py and model.py is main implementations.

  • wavenet
    • config.py : Training options
    • networks.py : The neural network architecture of WaveNet
    • model.py : Calculate loss and optimizing
    • utils
      • data.py : Utilities for loading data
    • test
      • Some tests for check if it's correct model like casual, dilated..
  • train.py : A script for WaveNet training
  • generate.py : A script for generating with pre-trained model

TODO

  • Add some nice samples
  • Global conditions
  • Local conditions
  • Faster generating
  • Parallel WaveNet
  • General Generator

References