forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_static_runtime.cc
283 lines (241 loc) · 9.24 KB
/
test_static_runtime.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#include <gtest/gtest.h>
#include <torch/csrc/jit/runtime/static/fusion.h>
#include <torch/csrc/jit/runtime/static/impl.h>
#include "deep_wide_pt.h"
#include "test_scripts.h"
using namespace caffe2;
using namespace torch;
using namespace torch::jit;
using c10::IValue;
namespace {
static at::Tensor getTensor(const at::IValue& ival) {
if (ival.isTensor()) {
return ival.toTensor();
} else if (ival.isTensorList()) {
auto tensor_vec = ival.toTensorVector();
TORCH_CHECK(tensor_vec.size() == 1);
return tensor_vec[0];
} else if (ival.isTuple()) {
auto tuple = ival.toTuple();
auto ivalue_vec = tuple->elements();
TORCH_CHECK(ivalue_vec.size() == 1);
return ivalue_vec[0].toTensor();
} else {
CAFFE_THROW("Unknown input IValue");
}
}
void compareTensorLists(
const std::vector<IValue>& l, /* values */
const std::vector<IValue>& r /* expects */) {
EXPECT_TRUE(l.size() == r.size());
for (int i = 0; i < l.size(); ++i) {
ASSERT_TRUE(l[i].isTensor());
ASSERT_TRUE(r[i].isTensor());
LOG(INFO) << "output " << i << ": \n" << l[i] << std::endl;
LOG(INFO) << "expect " << i << ": \n" << r[i] << std::endl;
EXPECT_TRUE(l[i].toTensor().equal(r[i].toTensor()));
}
}
void compareTensorLists(
const std::vector<at::Tensor>& l, /* values */
const std::vector<at::Tensor>& r /* expects */) {
EXPECT_TRUE(l.size() == r.size());
for (int i = 0; i < l.size(); ++i) {
LOG(INFO) << "output " << i << ": \n" << l[i] << std::endl;
LOG(INFO) << "expect " << i << ": \n" << r[i] << std::endl;
EXPECT_TRUE(l[i].equal(r[i]));
}
}
// Given a model/function in jit script, run the model/function
// with the jit interpreter and static runtime, and compare the results
void testStaticRuntime(
const std::string& jit_script,
const std::vector<IValue>& args) {
script::Module module("module");
module.define(jit_script);
auto expect = module.forward(args);
StaticRuntime runtime(module);
auto actual = runtime.run(args, {});
if (expect.isTuple()) {
compareTensorLists(
expect.toTuple()->elements(), actual.toTuple()->elements());
} else if (expect.isList()) {
compareTensorLists(
expect.toTensorVector(), actual.toTensorVector());
} else {
EXPECT_TRUE(expect.toTensor().equal(actual.toTensor()));
}
}
} // namespace
TEST(StaticRuntime, IndividualOps_Binary) {
auto a = at::randn({2, 3});
auto b = at::ones({2, 3});
std::vector<IValue> args{a, b};
testStaticRuntime(add_script, args);
testStaticRuntime(list_construct_script, args);
testStaticRuntime(list_unpack_script, args);
testStaticRuntime(tuple_construct_script, args);
}
TEST(StaticRuntime, LongModel) {
torch::jit::Module mod = getLongScriptModel();
auto a = torch::randn({2, 2});
auto b = torch::randn({2, 2});
auto c = torch::randn({2, 2});
// run jit graph executor
std::vector<at::IValue> input_ivalues({a, b, c});
at::Tensor output_1 = mod.forward(input_ivalues).toTensor();
// run static runtime
std::vector<at::Tensor> input_tensors({a, b, c});
auto g = torch::jit::PrepareForStaticRuntime(mod);
torch::jit::StaticRuntime runtime(g);
at::Tensor output_2 = runtime.run(input_tensors)[0];
EXPECT_TRUE(output_1.equal(output_2));
}
TEST(StaticRuntime, TrivialModel) {
torch::jit::Module mod = getTrivialScriptModel();
auto a = torch::randn({2, 2});
auto b = torch::randn({2, 2});
auto c = torch::randn({2, 2});
// run jit graph executor
std::vector<at::IValue> input_ivalues({a, b, c});
at::Tensor output_1 = mod.forward(input_ivalues).toTensor();
// run static runtime
std::vector<at::Tensor> input_tensors({a, b, c});
auto g = torch::jit::PrepareForStaticRuntime(mod);
torch::jit::StaticRuntime runtime(g);
at::Tensor output_2 = runtime.run(input_tensors)[0];
EXPECT_TRUE(output_1.equal(output_2));
}
TEST(StaticRuntime, LeakyReLU) {
torch::jit::Module mod = getLeakyReLUConstScriptModel();
auto inputs = torch::randn({2, 2});
// run jit graph executor
std::vector<at::IValue> input_ivalues({inputs});
at::Tensor output_1 = mod.forward(input_ivalues).toTensor();
// run static runtime
std::vector<at::Tensor> input_tensors({inputs});
auto g = torch::jit::PrepareForStaticRuntime(mod);
torch::jit::StaticRuntime runtime(g);
at::Tensor output_2 = runtime.run(input_tensors)[0];
EXPECT_TRUE(output_1.equal(output_2));
}
TEST(StaticRuntime, DeepWide) {
const int embedding_size = 32;
const int num_features = 50;
torch::jit::Module mod = getDeepAndWideSciptModel();
auto g = torch::jit::PrepareForStaticRuntime(mod);
torch::jit::StaticRuntime runtime(g);
for (int batch_size : {1, 8, 32}) {
for (int i = 0; i < 2; ++i) {
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
auto user_emb = torch::randn({batch_size, 1, embedding_size});
auto wide = torch::randn({batch_size, num_features});
// run jit graph executor
std::vector<at::IValue> inputs({ad_emb_packed, user_emb, wide});
auto output_1 = getTensor(mod.forward(inputs));
// run static runtime
std::vector<at::Tensor> input_tensors({ad_emb_packed, user_emb, wide});
at::Tensor output_2 = runtime.run(input_tensors)[0];
EXPECT_TRUE(output_1.equal(output_2));
}
}
}
TEST(StaticRuntime, KWargsAPI_1) {
const int embedding_size = 32;
const int num_features = 50;
auto module = getDeepAndWideSciptModel();
torch::jit::StaticRuntime runtime(module);
for (int batch_size : {1, 8, 32}) {
for (int i = 0; i < 2; ++i) {
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
auto user_emb = torch::randn({batch_size, 1, embedding_size});
auto wide = torch::randn({batch_size, num_features});
// run jit graph executor
std::vector<at::IValue> inputs({ad_emb_packed, user_emb, wide});
at::Tensor output_1 = getTensor(module.forward(inputs));
// run static runtime
at::Tensor output_2 = getTensor(runtime.run(inputs, {}));
EXPECT_TRUE(output_1.equal(output_2));
}
}
}
TEST(StaticRuntime, KWargsAPI_2) {
const int embedding_size = 32;
const int num_features = 50;
auto module = getDeepAndWideSciptModel();
auto g = torch::jit::PrepareForStaticRuntime(module);
torch::jit::StaticRuntime runtime(module);
for (int batch_size : {1, 8, 32}) {
for (int i = 0; i < 2; ++i) {
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
auto user_emb = torch::randn({batch_size, 1, embedding_size});
auto wide = torch::randn({batch_size, num_features});
// run jit graph executor
std::vector<at::IValue> args({ad_emb_packed, user_emb, wide});
at::Tensor output_1 = getTensor(module.forward(args));
std::unordered_map<std::string, c10::IValue> kwargs(
{{"ad_emb_packed", ad_emb_packed},
{"user_emb", user_emb},
{"wide", wide}});
// run static runtime
at::Tensor output_2 = getTensor(runtime.run({}, kwargs));
EXPECT_TRUE(output_1.equal(output_2));
}
}
}
TEST(StaticRuntime, CleanUpMemory) {
const int embedding_size = 32;
const int num_features = 50;
torch::jit::Module mod = getDeepAndWideSciptModel();
auto g = torch::jit::PrepareForStaticRuntime(mod);
for (auto cleanup_memory : {true, false}) {
for (auto enable_out_variant : {true, false}) {
VLOG(1) << "cleanup_memory: " << cleanup_memory
<< ", enable_out_variant: " << enable_out_variant;
torch::jit::StaticRuntimeOptions opts{cleanup_memory, enable_out_variant};
torch::jit::StaticRuntime runtime(g, opts);
for (int batch_size : {1, 8, 32}) {
for (int i = 0; i < 2; ++i) {
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
auto user_emb = torch::randn({batch_size, 1, embedding_size});
auto wide = torch::randn({batch_size, num_features});
// run jit graph executor
std::vector<at::IValue> inputs({ad_emb_packed, user_emb, wide});
auto output_1 = getTensor(mod.forward(inputs));
// run static runtime
std::vector<at::Tensor> input_tensors(
{ad_emb_packed, user_emb, wide});
at::Tensor output_2 = runtime.run(input_tensors)[0];
EXPECT_TRUE(output_1.equal(output_2));
}
}
}
}
}
TEST(StaticRuntime, FusionPass) {
const int embedding_size = 32;
const int num_features = 50;
for (int batch_size : {1, 8, 32}) {
for (int i = 0; i < 2; ++i) {
torch::jit::Module module = getDeepAndWideSciptModel();
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
auto user_emb = torch::randn({batch_size, 1, embedding_size});
auto wide = torch::randn({batch_size, num_features});
// run jit graph executor
std::vector<at::IValue> inputs({ad_emb_packed, user_emb, wide});
auto output_1 = getTensor(module.forward(inputs));
Method method = module.get_method("forward");
auto graph = method.graph();
fuseStaticSubgraphs(graph);
bool hit = false;
for (const auto& n : module.get_method("forward").graph()->nodes()) {
if (n->kind() == torch::jit::prim::StaticSubgraph) {
hit = true;
}
}
EXPECT_TRUE(hit);
auto output_2 = getTensor(module.forward(inputs));
EXPECT_TRUE(output_1.equal(output_2));
}
}
}