-
Notifications
You must be signed in to change notification settings - Fork 4
/
gchain1.c
520 lines (484 loc) · 18.3 KB
/
gchain1.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
#include <math.h>
#include <string.h>
#include "mgpriv.h"
#include "ksort.h" // for radix sort
#include "khashl.h" // for kh_hash_uint32()
#include "gfa-priv.h"
typedef struct {
uint32_t srt;
int32_t i;
} gc_frag_t;
#define gc_frag_key(p) ((p).srt)
KRADIX_SORT_INIT(gc, gc_frag_t, gc_frag_key, 4)
static int32_t find_max(int32_t n, const gc_frag_t *gf, int32_t x)
{
int32_t s = 0, e = n;
if (n == 0) return -1;
if (gf[n-1].srt < x) return n - 1;
if (gf[0].srt >= x) return -1;
while (e > s) { // TODO: finish this block
int32_t m = s + (e - s) / 2;
if (gf[m].srt >= x) e = m;
else s = m + 1;
}
assert(s == e);
return s;
}
static int32_t mg_target_dist(const gfa_t *g, const mg_lchain_t *l0, const mg_lchain_t *l1)
{
// below equals (l1->qs - l0->qe) - min_dist + g->seg[l1->v>>1].len; see mg_gchain1_dp() for the calculation of min_dist
return (l1->qs - l0->qe) - (g->seg[l0->v>>1].len - l0->re) + (g->seg[l1->v>>1].len - l1->rs);
// when l0->v == l1->v, the above becomes (l1->qs - l0->qe) - (l1->rs - l0->re), which is what we want
}
static inline int32_t cal_sc(const mg_path_dst_t *dj, const mg_lchain_t *li, const mg_lchain_t *lc, const mg128_t *an, const gc_frag_t *a, const int32_t *f,
int bw, int ref_bonus, float chn_pen_gap)
{
const mg_lchain_t *lj;
int32_t gap, sc, segi, segj;
float lin_pen, log_pen;
if (dj->n_path == 0) return INT32_MIN;
segi = (an[li->off].y & MG_SEED_SEG_MASK) >> MG_SEED_SEG_SHIFT;
gap = dj->dist - dj->target_dist;
lj = &lc[a[dj->meta].i];
segj = (an[lj->off + lj->cnt - 1].y & MG_SEED_SEG_MASK) >> MG_SEED_SEG_SHIFT;
if (gap < 0) gap = -gap;
if (segi == segj && gap > bw) return INT32_MIN;
if (lj->qe <= li->qs) sc = li->score;
else sc = (int32_t)((double)(li->qe - lj->qe) / (li->qe - li->qs) * li->score + .499); // dealing with overlap on query
//sc += dj->mlen; // TODO: is this line the right thing to do?
if (dj->is_0) sc += ref_bonus;
lin_pen = chn_pen_gap * (float)gap;
log_pen = gap >= 2? mg_log2(gap) : 0.0f;
sc -= (int32_t)(lin_pen + log_pen);
sc += f[dj->meta];
return sc;
}
int32_t mg_gchain1_dp(void *km, const gfa_t *g, int32_t *n_lc_, mg_lchain_t *lc, int32_t qlen, int32_t max_dist_g, int32_t max_dist_q, int32_t bw, int32_t max_skip,
int32_t ref_bonus, float chn_pen_gap, float chn_pen_skip, float mask_level, const mg128_t *an, uint64_t **u_)
{
int32_t i, j, k, m_dst, n_dst, n_ext, n_u, n_v, n_lc = *n_lc_;
int32_t *f, *v, *t;
int64_t *p;
uint64_t *u;
mg_path_dst_t *dst;
gc_frag_t *a;
mg_lchain_t *swap;
char *qs;
*u_ = 0;
if (n_lc == 0) return 0;
KMALLOC(km, a, n_lc);
for (i = n_ext = 0; i < n_lc; ++i) { // a[] is a view of frag[]; for sorting
mg_lchain_t *r = &lc[i];
gc_frag_t *ai = &a[i];
int32_t is_isolated = 0, min_end_dist_g;
r->dist_pre = -1;
min_end_dist_g = g->seg[r->v>>1].len - r->re;
if (r->rs < min_end_dist_g) min_end_dist_g = r->rs;
if (min_end_dist_g > max_dist_g) is_isolated = 1; // if too far from segment ends
else if (min_end_dist_g>>3 > r->score) is_isolated = 1; // if the lchain too small relative to distance to the segment ends
ai->srt = (uint32_t)is_isolated<<31 | r->qe;
ai->i = i;
if (!is_isolated) ++n_ext;
}
if (n_ext < 2) { // no graph chaining needed; early return
kfree(km, a);
KMALLOC(km, u, n_lc);
for (i = 0; i < n_lc; ++i)
u[i] = (uint64_t)lc[i].score<<32 | 1;
*u_ = u;
return n_lc;
}
radix_sort_gc(a, a + n_lc);
KMALLOC(km, v, n_lc);
KMALLOC(km, f, n_ext);
KMALLOC(km, p, n_ext);
KCALLOC(km, t, n_ext);
KMALLOC(km, qs, max_dist_q + 1);
m_dst = n_dst = 0, dst = 0;
for (i = 0; i < n_ext; ++i) { // core loop
gc_frag_t *ai = &a[i];
mg_lchain_t *li = &lc[ai->i];
int32_t segi = (an[li->off].y & MG_SEED_SEG_MASK) >> MG_SEED_SEG_SHIFT;
{ // collect end points potentially reachable from _i_
int32_t x = li->qs + bw, n_skip = 0;
if (x > qlen) x = qlen;
x = find_max(i, a, x);
n_dst = 0;
for (j = x; j >= 0; --j) { // collect potential destination vertices
gc_frag_t *aj = &a[j];
mg_lchain_t *lj = &lc[aj->i];
mg_path_dst_t *q;
int32_t target_dist, segj, dq;
if (lj->qs >= li->qs) continue; // lj is contained in li on the query coordinate
if (lj->qe > li->qs) { // test overlap on the query
int o = lj->qe - li->qs;
if (o > (lj->qe - lj->qs) * mask_level || o > (li->qe - li->qs) * mask_level)
continue;
}
dq = li->qs - lj->qe;
segj = (an[lj->off + lj->cnt - 1].y & MG_SEED_SEG_MASK) >> MG_SEED_SEG_SHIFT;
if (segi == segj) {
if (dq > max_dist_q) break; // if query gap too large, stop
} else {
if (dq > max_dist_g && dq > max_dist_q) break;
}
if (li->v != lj->v) { // the two linear chains are on two different segments
int32_t min_dist = li->rs + (g->seg[lj->v>>1].len - lj->re); // minimal graph gap
if (min_dist > max_dist_g) continue; // graph gap too large
if (segi == segj && min_dist - bw > li->qs - lj->qe) continue; // when li->qs < lj->qe, the condition turns to min_dist + (lj->qe - li->qs) > bw, which is desired
target_dist = mg_target_dist(g, lj, li);
if (target_dist < 0) continue; // this may happen if the query overlap is far too large
} else if (lj->rs >= li->rs || lj->re >= li->re) { // not colinear
continue;
} else {
int32_t dr = li->rs - lj->re, w = dr > dq? dr - dq : dq - dr;
if (segi == segj && w > bw) continue; // test bandwidth
if (dr > max_dist_g || dr < -max_dist_g) continue;
if (lj->re > li->rs) { // test overlap on the graph segment
int o = lj->re - li->rs;
if (o > (lj->re - lj->rs) * mask_level || o > (li->re - li->rs) * mask_level)
continue;
}
target_dist = mg_target_dist(g, lj, li);
}
if (n_dst == m_dst) KEXPAND(km, dst, m_dst); // TODO: watch out the quadratic behavior!
q = &dst[n_dst++];
memset(q, 0, sizeof(mg_path_dst_t));
q->inner = (li->v == lj->v);
q->v = lj->v^1;
q->meta = j;
q->qlen = li->qs - lj->qe;
q->target_dist = target_dist;
q->target_hash = 0;
q->check_hash = 0;
if (t[j] == i) {
if (++n_skip > max_skip)
break;
}
if (p[j] >= 0) t[p[j]] = i;
}
}
{ // confirm reach-ability
int32_t k;
// test reach-ability without sequences
mg_shortest_k(km, g, li->v^1, n_dst, dst, max_dist_g + (g->seg[li->v>>1].len - li->rs), MG_MAX_SHORT_K, 0);
// remove unreachable destinations
for (j = k = 0; j < n_dst; ++j) {
mg_path_dst_t *dj = &dst[j];
int32_t sc;
if (dj->n_path == 0) continue; // not reachable
sc = cal_sc(dj, li, lc, an, a, f, bw, ref_bonus, chn_pen_gap);
if (sc == INT32_MIN) continue; // out of band
if (sc + li->score < 0) continue; // negative score and too low
dst[k++] = dst[j];
}
n_dst = k;
}
{ // DP
int32_t max_f = li->score, max_j = -1, max_d = -1, max_inner = 0;
uint32_t max_hash = 0;
for (j = 0; j < n_dst; ++j) {
mg_path_dst_t *dj = &dst[j];
int32_t sc;
sc = cal_sc(dj, li, lc, an, a, f, bw, ref_bonus, chn_pen_gap);
if (sc == INT32_MIN) continue;
if (mg_dbg_flag & MG_DBG_GC1) {
mg_lchain_t *lj = &lc[a[dj->meta].i];
fprintf(stderr, " [dst:%d] dst=%c%s[%d], n_path=%d, target=%d, opt_dist=%d, score=%d, q_intv=[%d,%d), g_intv=[%d,%d)\n", dj->meta, "><"[dj->v&1], g->seg[dj->v>>1].name, dj->v, dj->n_path, dj->target_dist - g->seg[li->v>>1].len, dj->dist - g->seg[li->v>>1].len, sc, lj->qs, lj->qe, lj->rs, lj->re);
}
if (sc > max_f) max_f = sc, max_j = dj->meta, max_d = dj->dist, max_hash = dj->hash, max_inner = dj->inner;
}
f[i] = max_f, p[i] = max_j;
li->dist_pre = max_d;
li->hash_pre = max_hash;
li->inner_pre = max_inner;
v[i] = max_j >= 0 && v[max_j] > max_f? v[max_j] : max_f;
if (mg_dbg_flag & MG_DBG_GC1) fprintf(stderr, " [opt:%d] opt=%d, max_f=%d\n", ai->i, max_j, max_f);
}
}
kfree(km, dst);
kfree(km, qs);
if (mg_dbg_flag & MG_DBG_GC1) {
int32_t mmax_f = 0, mmax_i = -1;
for (i = 0; i < n_ext; ++i) if (f[i] > mmax_f) mmax_f = f[i], mmax_i = i;
i = mmax_i; while (i >= 0) { fprintf(stderr, "[best] i=%d, seg=%s, max_f=%d, chn_pen_gap=%f\n", a[i].i, g->seg[lc[a[i].i].v>>1].name, f[i], chn_pen_gap); i = p[i]; }
}
u = mg_chain_backtrack(km, n_ext, f, p, v, t, 0, 0, INT32_MAX, n_lc - n_ext, &n_u, &n_v);
kfree(km, f); kfree(km, p); kfree(km, t);
for (i = 0; i < n_lc - n_ext; ++i) {
u[n_u++] = (uint64_t)lc[a[n_ext + i].i].score << 32 | 1;
v[n_v++] = n_ext + i;
}
KMALLOC(km, swap, n_v);
for (i = 0, k = 0; i < n_u; ++i) {
int32_t k0 = k, ni = (int32_t)u[i];
for (j = 0; j < ni; ++j)
swap[k++] = lc[a[v[k0 + (ni - j - 1)]].i];
}
assert(k == n_v);
memcpy(lc, swap, n_v * sizeof(mg_lchain_t));
*n_lc_ = n_v;
*u_ = u;
kfree(km, a);
kfree(km, swap);
kfree(km, v);
return n_u;
}
void mg_gchain_extra(const gfa_t *g, mg_gchains_t *gs)
{
int32_t i, j, k;
for (i = 0; i < gs->n_gc; ++i) { // iterate over gchains
mg_gchain_t *p = &gs->gc[i];
const mg_llchain_t *q;
const mg128_t *last_a;
int32_t q_span, rest_pl, tmp, n_mini;
p->qs = p->qe = p->ps = p->pe = -1, p->plen = p->blen = p->mlen = 0, p->div = -1.0f;
if (p->cnt == 0) continue;
assert(gs->lc[p->off].cnt > 0 && gs->lc[p->off + p->cnt - 1].cnt > 0); // first and last lchains can't be empty
q = &gs->lc[p->off];
q_span = (int32_t)(gs->a[q->off].y>>32&0xff);
p->qs = (int32_t)gs->a[q->off].y + 1 - q_span;
p->ps = (int32_t)gs->a[q->off].x + 1 - q_span;
tmp = (int32_t)(gs->a[q->off].x>>32);
assert(p->qs >= 0 && p->ps >= 0);
q = &gs->lc[p->off + p->cnt - 1];
p->qe = (int32_t)gs->a[q->off + q->cnt - 1].y + 1;
p->pe = g->seg[q->v>>1].len - (int32_t)gs->a[q->off + q->cnt - 1].x - 1; // this is temporary
n_mini = (int32_t)(gs->a[q->off + q->cnt - 1].x>>32) - tmp + 1;
assert(p->n_anchor > 0);
rest_pl = 0; // this value is never used if the first lchain is not empty (which should always be true)
last_a = &gs->a[gs->lc[p->off].off];
for (j = 0; j < p->cnt; ++j) { // iterate over lchains
const mg_llchain_t *q = &gs->lc[p->off + j];
int32_t vlen = g->seg[q->v>>1].len;
p->plen += vlen;
for (k = 0; k < q->cnt; ++k) { // iterate over anchors
const mg128_t *r = &gs->a[q->off + k];
int32_t pl, ql = (int32_t)r->y - (int32_t)last_a->y;
int32_t span = (int32_t)(r->y>>32&0xff);
if (j == 0 && k == 0) { // the first anchor on the first lchain
pl = ql = span;
} else if (j > 0 && k == 0) { // the first anchor but not on the first lchain
pl = (int32_t)r->x + 1 + rest_pl;
} else {
pl = (int32_t)r->x - (int32_t)last_a->x;
}
if (ql < 0) ql = -ql, n_mini += (int32_t)(last_a->x>>32) - (int32_t)(r->x>>32); // dealing with overlapping query at junctions
p->blen += pl > ql? pl : ql;
p->mlen += pl > span && ql > span? span : pl < ql? pl : ql;
last_a = r;
}
if (q->cnt == 0) rest_pl += vlen;
else rest_pl = vlen - (int32_t)gs->a[q->off + q->cnt - 1].x - 1;
}
p->pe = p->plen - p->pe;
assert(p->pe >= p->ps);
// here n_mini >= p->n_anchor should stand almost all the time
p->div = n_mini >= p->n_anchor? log((double)n_mini / p->n_anchor) / q_span : log((double)p->n_anchor / n_mini) / q_span;
}
}
/*
* Generate graph chains
*/
typedef struct {
void *km;
const gfa_t *g;
const gfa_edseq_t *es;
const char *qseq;
int32_t n_seg, n_llc, m_llc, n_a;
mg_llchain_t *llc;
} bridge_aux_t;
static inline void copy_lchain(mg_llchain_t *q, const mg_lchain_t *p, int32_t *n_a, mg128_t *a_new, const mg128_t *a_old, int32_t ed)
{
q->cnt = p->cnt, q->v = p->v, q->score = p->score, q->ed = ed;
memcpy(&a_new[*n_a], &a_old[p->off], q->cnt * sizeof(mg128_t));
q->off = *n_a;
(*n_a) += q->cnt;
}
static void bridge_shortk(bridge_aux_t *aux, const mg_lchain_t *l0, const mg_lchain_t *l1)
{
int32_t s, n_pathv;
mg_path_dst_t dst;
mg_pathv_t *p;
memset(&dst, 0, sizeof(mg_path_dst_t));
dst.v = l0->v ^ 1;
assert(l1->dist_pre >= 0);
dst.target_dist = l1->dist_pre;
dst.target_hash = l1->hash_pre;
dst.check_hash = 1;
p = mg_shortest_k(aux->km, aux->g, l1->v^1, 1, &dst, dst.target_dist, MG_MAX_SHORT_K, &n_pathv);
if (n_pathv == 0 || dst.target_hash != dst.hash)
fprintf(stderr, "%c%s[%d] -> %c%s[%d], dist=%d, target_dist=%d\n", "><"[(l1->v^1)&1], aux->g->seg[l1->v>>1].name, l1->v^1, "><"[(l0->v^1)&1], aux->g->seg[l0->v>>1].name, l0->v^1, dst.dist, dst.target_dist);
assert(n_pathv > 0);
assert(dst.target_hash == dst.hash);
for (s = n_pathv - 2; s >= 1; --s) { // path found in a backward way, so we need to reverse it
mg_llchain_t *q;
if (aux->n_llc == aux->m_llc) KEXPAND(aux->km, aux->llc, aux->m_llc);
q = &aux->llc[aux->n_llc++];
q->off = q->cnt = q->score = 0;
q->v = p[s].v^1; // when reversing a path, we also need to flip the orientation
q->ed = -1;
}
kfree(aux->km, p);
}
static int32_t bridge_gwfa(bridge_aux_t *aux, int32_t kmer_size, int32_t gdp_max_ed, const mg_lchain_t *l0, const mg_lchain_t *l1, int32_t *ed)
{
uint32_t v0 = l0->v, v1 = l1->v;
int32_t qs = l0->qe - kmer_size, qe = l1->qs + kmer_size, end0, end1, j;
void *z;
gfa_edopt_t opt;
gfa_edrst_t r;
*ed = -1;
end0 = l0->re - kmer_size;
end1 = l1->rs + kmer_size - 1;
gfa_edopt_init(&opt);
opt.traceback = 1, opt.max_chk = 1000, opt.bw_dyn = 1000, opt.max_lag = gdp_max_ed/2;
opt.i_term = 500000000LL;
z = gfa_ed_init(aux->km, &opt, aux->g, aux->es, qe - qs, &aux->qseq[qs], v0, end0);
gfa_ed_step(z, v1, end1, gdp_max_ed, &r);
gfa_ed_destroy(z);
//fprintf(stdout, "qs=%d,qe=%d,v0=%c%s:%d:%d,v1=%c%s:%d,s=%d,nv=%d\n", qs, qe, "><"[v0&1], aux->g->seg[v0>>1].name, end0, aux->g->seg[v0>>1].len - end0 - 1, "><"[v1&1], aux->g->seg[v1>>1].name, end1, r.s, r.nv);
if (r.s < 0) return 0;
for (j = 1; j < r.nv - 1; ++j) {
mg_llchain_t *q;
if (aux->n_llc == aux->m_llc) KEXPAND(aux->km, aux->llc, aux->m_llc);
q = &aux->llc[aux->n_llc++];
q->off = q->cnt = q->score = 0;
q->v = r.v[j];
q->ed = -1;
}
kfree(aux->km, r.v);
*ed = r.s;
return 1;
}
static void bridge_lchains(mg_gchains_t *gc, bridge_aux_t *aux, int32_t kmer_size, int32_t gdp_max_ed, const mg_lchain_t *l0, const mg_lchain_t *l1, const mg128_t *a)
{
if (!l1->inner_pre) { // bridging two segments
int32_t ed = -1;
if (aux->n_seg > 1 || !bridge_gwfa(aux, kmer_size, gdp_max_ed, l0, l1, &ed))
bridge_shortk(aux, l0, l1);
if (aux->n_llc == aux->m_llc) KEXPAND(aux->km, aux->llc, aux->m_llc);
copy_lchain(&aux->llc[aux->n_llc++], l1, &aux->n_a, gc->a, a, ed);
} else { // on one segment
int32_t k;
mg_llchain_t *t = &aux->llc[aux->n_llc - 1];
assert(l0->v == l1->v);
for (k = 0; k < l1->cnt; ++k) { // FIXME: this part is made redundant by resolve_overlap()
const mg128_t *ak = &a[l1->off + k];
if ((int32_t)ak->x > l0->re && (int32_t)ak->y > l0->qe)
break;
}
assert(k < l1->cnt);
t->cnt += l1->cnt - k, t->score += l1->score;
memcpy(&gc->a[aux->n_a], &a[l1->off + k], (l1->cnt - k) * sizeof(mg128_t));
aux->n_a += l1->cnt - k;
}
}
static void resolve_overlap(mg_lchain_t *l0, mg_lchain_t *l1, const mg128_t *a)
{
int32_t j, x, y, shift0, shift1;
// check the end of l0
x = (int32_t)a[l1->off].x;
y = (int32_t)a[l1->off].y;
for (j = l0->cnt - 1; j >= 0; --j)
if ((int32_t)a[l0->off + j].y <= y && (l0->v != l1->v || (int32_t)a[l0->off + j].x <= x))
break;
shift0 = l0->cnt - 1 - j;
// check the start of l1
x = (int32_t)a[l0->off + l0->cnt - 1].x;
y = (int32_t)a[l0->off + l0->cnt - 1].y;
for (j = 0; j < l1->cnt; ++j)
if ((int32_t)a[l1->off + j].y >= y && (l0->v != l1->v || (int32_t)a[l1->off + j].x >= x))
break;
shift1 = j;
assert(shift1 < l1->cnt); // this should never happen, or it is a bug
// update
if (shift0 > 0) {
l0->cnt -= shift0;
if (l0->cnt) { // l0->cnt may be 0 as the start of l0 may be changed and go into l1
l0->qe = (int32_t)a[l0->off + l0->cnt - 1].y + 1;
l0->re = (int32_t)a[l0->off + l0->cnt - 1].x + 1;
}
}
if (shift1 > 0) {
l1->off += shift1, l1->cnt -= shift1;
l1->qs = (int32_t)a[l1->off].y + 1 - (int32_t)(a[l1->off].y>>32&0xff);
l1->rs = (int32_t)a[l1->off].x + 1 - (int32_t)(a[l1->off].y>>32&0xff);
}
if (l0->cnt == 0) l0->qs = l0->qe = l1->qs, l0->rs = l0->re = l1->rs; // this line should have no effect
}
mg_gchains_t *mg_gchain_gen(void *km_dst, void *km, const gfa_t *g, const gfa_edseq_t *es, int32_t n_u, const uint64_t *u,
mg_lchain_t *lc, const mg128_t *a, uint32_t hash, int32_t min_gc_cnt, int32_t min_gc_score,
int32_t gdp_max_ed, int32_t n_seg, const char *qseq)
{
mg_gchains_t *gc;
int32_t i, j, k, st, kmer_size;
bridge_aux_t aux;
// preallocate gc->gc and gc->a
KCALLOC(km_dst, gc, 1);
for (i = 0, st = 0; i < n_u; ++i) {
int32_t m = 0, nui = (int32_t)u[i];
for (j = 0; j < nui; ++j) m += lc[st + j].cnt; // m is the number of anchors in this gchain
if (m >= min_gc_cnt && u[i]>>32 >= min_gc_score)
gc->n_gc++, gc->n_a += m;
st += nui;
}
if (gc->n_gc == 0) return gc;
gc->km = km_dst;
KCALLOC(km_dst, gc->gc, gc->n_gc);
KMALLOC(km_dst, gc->a, gc->n_a);
// core loop
memset(&aux, 0, sizeof(aux));
aux.km = km, aux.g = g, aux.es = es, aux.n_seg = n_seg, aux.qseq = qseq;
kmer_size = a[0].y>>32&0xff;
for (i = k = 0, st = 0, aux.n_a = 0; i < n_u; ++i) {
int32_t n_a0 = aux.n_a, n_llc0 = aux.n_llc, m = 0, nui = (int32_t)u[i];
for (j = 0; j < nui; ++j) m += lc[st + j].cnt;
if (m >= min_gc_cnt && u[i]>>32 >= min_gc_score) {
uint32_t h = hash;
int32_t j0;
gc->gc[k].score = u[i]>>32;
gc->gc[k].off = n_llc0;
for (j = 0; j < nui; ++j) {
const mg_lchain_t *p = &lc[st + j];
h += kh_hash_uint32(p->qs) + kh_hash_uint32(p->re) + kh_hash_uint32(p->v);
}
gc->gc[k].hash = kh_hash_uint32(h);
for (j = 1; j < nui; ++j)
resolve_overlap(&lc[st + j - 1], &lc[st + j], a);
if (aux.n_llc == aux.m_llc) KEXPAND(aux.km, aux.llc, aux.m_llc);
copy_lchain(&aux.llc[aux.n_llc++], &lc[st], &aux.n_a, gc->a, a, -1); // copy the first lchain
for (j0 = 0, j = 1; j < nui; ++j) {
const mg_lchain_t *l0 = &lc[st + j0], *l1 = &lc[st + j];
if (l1->cnt > 0) {
bridge_lchains(gc, &aux, kmer_size, gdp_max_ed, l0, l1, a);
j0 = j;
}
}
gc->gc[k].cnt = aux.n_llc - n_llc0;
gc->gc[k].n_anchor = aux.n_a - n_a0;
++k;
}
st += nui;
}
assert(aux.n_a <= gc->n_a);
gc->n_a = aux.n_a;
gc->n_lc = aux.n_llc;
KMALLOC(km_dst, gc->lc, aux.n_llc);
memcpy(gc->lc, aux.llc, aux.n_llc * sizeof(mg_llchain_t));
kfree(km, aux.llc);
mg_gchain_extra(g, gc);
mg_gchain_sort_by_score(km, gc);
return gc;
}
void mg_gchain_free(mg_gchains_t *gs)
{
void *km;
int32_t i;
if (gs == 0) return;
km = gs->km;
for (i = 0; i < gs->n_gc; ++i)
if (gs->gc[i].p) kfree(km, gs->gc[i].p);
kfree(km, gs->gc); kfree(km, gs->a); kfree(km, gs->lc);
kfree(km, gs);
}