-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
416 lines (346 loc) · 15.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import os
import numpy as np
import glob
import re
import torch.nn as nn
import torch
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
class EarlyStop:
def __init__(self, patience: int, verbose: bool = True):
self.patience = patience
self.init_patience = patience
self.verbose = verbose
self.lowest_loss = 9999999.999
self.highest_acc = -0.1
def state_dict(self):
return {
'patience': self.patience,
'init_patience': self.init_patience,
'verbose': self.verbose,
'lowest_loss': self.lowest_loss,
'highest_acc': self.highest_acc,
}
def load_state_dict(self, state_dict):
self.patience = state_dict['patience']
self.init_patience = state_dict['init_patience']
self.verbose = state_dict['verbose']
self.lowest_loss = state_dict['lowest_loss']
self.highest_acc = state_dict['highest_acc']
def step(self, loss=None, acc=None, criterion=lambda x1, x2: x1 or x2):
if loss is None:
loss = self.lowest_loss
better_loss = True
else:
better_loss = (loss < self.lowest_loss) and ((self.lowest_loss - loss) / self.lowest_loss > 0.01)
if acc is None:
acc = self.highest_acc
better_acc = True
else:
better_acc = acc > self.highest_acc
if better_loss:
self.lowest_loss = loss
if better_acc:
self.highest_acc = acc
if criterion(better_loss, better_acc):
self.patience = self.init_patience
if self.verbose:
print('Remaining patience: {}'.format(self.patience))
return False
else:
self.patience -= 1
if self.verbose:
print('Remaining patience: {}'.format(self.patience))
if self.patience < 0:
if self.verbose:
print('Ran out of patience.')
return True
################## Metrics
def get_labels_start_end_time(frame_wise_labels, bg_class):
labels = []
starts = []
ends = []
last_label = frame_wise_labels[0]
if frame_wise_labels[0] not in bg_class:
labels.append(frame_wise_labels[0])
starts.append(0)
for i in range(len(frame_wise_labels)):
if frame_wise_labels[i] != last_label:
if frame_wise_labels[i] not in bg_class:
labels.append(frame_wise_labels[i])
starts.append(i)
if last_label not in bg_class:
ends.append(i)
last_label = frame_wise_labels[i]
if last_label not in bg_class:
ends.append(i + 1)
return labels, starts, ends
def levenstein(p, y, norm):
m_row = len(p)
n_col = len(y)
D = np.zeros([m_row + 1, n_col + 1], 'float')
for i in range(m_row + 1):
D[i, 0] = i
for i in range(n_col + 1):
D[0, i] = i
for j in range(1, n_col + 1):
for i in range(1, m_row + 1):
if y[j - 1] == p[i - 1]:
D[i, j] = D[i - 1, j - 1]
else:
D[i, j] = min(D[i - 1, j] + 1,
D[i, j - 1] + 1,
D[i - 1, j - 1] + 1)
if norm:
score = (1 - D[-1, -1] / max(m_row, n_col)) * 100
else:
score = D[-1, -1]
return score
def edit_score(recognized, ground_truth, bg_class):
norm = True
P, _, _ = get_labels_start_end_time(recognized, bg_class)
Y, _, _ = get_labels_start_end_time(ground_truth, bg_class)
return levenstein(P, Y, norm)
def f_score(recognized, ground_truth, overlap, bg_class):
p_label, p_start, p_end = get_labels_start_end_time(recognized, bg_class)
y_label, y_start, y_end = get_labels_start_end_time(ground_truth, bg_class)
tp = 0
fp = 0
hits = np.zeros(len(y_label))
for j in range(len(p_label)):
intersection = np.minimum(p_end[j], y_end) - np.maximum(p_start[j], y_start)
union = np.maximum(p_end[j], y_end) - np.minimum(p_start[j], y_start)
IoU = (1.0 * intersection / union) * ([p_label[j] == y_label[x] for x in range(len(y_label))])
# Get the best scoring segment
idx = np.array(IoU).argmax()
if IoU[idx] >= overlap and not hits[idx]:
tp += 1
hits[idx] = 1
else:
fp += 1
fn = len(y_label) - sum(hits)
return float(tp), float(fp), float(fn)
def recog_file(filename, ground_truth_path, overlap, background_class_list):
# read ground truth
gt_file = ground_truth_path + re.sub('.*/', '/', filename)
with open(gt_file, 'r') as f:
gt_content = f.read().split('\n')[0:-1]
f.close()
# read recognized sequence
with open(filename, 'r') as f:
recog_content = f.read().split('\n')[0:-1] # framelevel recognition is in 6-th line of file
f.close()
n_frame_correct = 0
for i in range(len(recog_content)):
if recog_content[i] == gt_content[i]:
n_frame_correct += 1
edit_score_value = edit_score(recog_content, gt_content, background_class_list)
tp_arr = []
fp_arr = []
fn_arr = []
for s in range(len(overlap)):
tp1, fp1, fn1 = f_score(recog_content, gt_content, overlap[s], background_class_list)
tp_arr.append(tp1)
fp_arr.append(fp1)
fn_arr.append(fn1)
return n_frame_correct, len(recog_content), tp_arr, fp_arr, fn_arr, edit_score_value
def calculate_mof(ground_truth_path_name, prediction_path, background_class):
overlap = [.1, .25, .5]
overlap_scores = np.zeros(3)
tp, fp, fn = np.zeros(3), np.zeros(3), np.zeros(3)
edit = 0
n_frames = 0
n_correct = 0
filelist = glob.glob(prediction_path + '/*txt')
if len(filelist) == 0:
return 0, 0, overlap_scores
# loop over all recognition files and evaluate the frame error
for filename in filelist:
correct, frames, tp_arr, fp_arr, fn_arr, edit_score_value = recog_file(filename, ground_truth_path_name,
overlap, background_class)
n_correct += correct
n_frames += frames
edit += edit_score_value
for i in range(len(overlap)):
tp[i] += tp_arr[i]
fp[i] += fp_arr[i]
fn[i] += fn_arr[i]
if n_correct == 0 or n_frames == 0:
acc = 0
else:
acc = float(n_correct) * 100.0 / n_frames
final_edit_score = ((1.0 * edit) / len(filelist))
for s in range(len(overlap)):
precision = tp[s] / float(tp[s] + fp[s])
recall = tp[s] / float(tp[s] + fn[s])
f1 = 2.0 * (precision * recall) / (precision + recall)
f1 = np.nan_to_num(f1) * 100
overlap_scores[s] = f1
return final_edit_score, acc, overlap_scores
################### post_process
class PostProcess(nn.Module):
def __init__(self, args, label_dict, actions_dict, gt_path):
super().__init__()
self.labels_dict_id2name = label_dict
self.labels_dict_name2id = actions_dict
self.results_dict = dict()
self.chunk_size = args.chunk_size
self.gd_path = gt_path
self.count = 0
def start(self):
self.results_dict = dict()
self.count = 0
def dump_to_directory(self, path, suffix='_gt'):
print("Number of cats =", self.count, ", Number of videos = ", len(self.results_dict))
if len(self.results_dict.items()) == 0:
return
for video_id, video_value in self.results_dict.items():
pred_value = video_value[0].detach().cpu().numpy()
label_count = video_value[1].detach().cpu().numpy()
label_send = video_value[2].detach().cpu().numpy()
name = video_id.split('%')[0]
video_path = os.path.join(self.gd_path, name + ".txt")
recog_content = []
with open(video_path, 'r') as f:
lines = f.readlines()
for l in lines:
tmp = l.split('\t')
start_l, end_l, label_l = int(tmp[0]), int(tmp[1]), tmp[2]
recog_content.extend([label_l] * (end_l - start_l))
label_name_arr = [self.labels_dict_id2name[i.item()] for i in pred_value[:label_count.item()]]
new_label_name_expanded = [] # np.empty(len(recog_content), dtype=np.object_)
# for non rgb view, some video are only partially featured, leading to long gt but short vid length (total 8 vids)
# if abs(len(recog_content) - (len(label_name_arr)*self.chunk_size)) >= self.chunk_size:
# print("gt length {}, pred length {}".format(len(recog_content), len(label_name_arr) * self.chunk_size))
for i, ele in enumerate(label_name_arr):
st = i * self.chunk_size
end = st + self.chunk_size
if end > len(recog_content):
end = len(recog_content)
for j in range(st, end):
new_label_name_expanded.append(ele)
if len(new_label_name_expanded) >= len(recog_content):
break
out_path = os.path.join(path, video_id.replace("%", '_') + ".txt")
with open(out_path, "w") as fp:
fp.write("\n".join(new_label_name_expanded))
fp.write("\n")
out_path1 = os.path.join(path + suffix, video_id.replace("%", '_') + ".txt")
with open(out_path1, "w") as fp:
fp.write("\n".join(recog_content[:len(new_label_name_expanded)]))
fp.write("\n")
# print(len(new_label_name_expanded), len(recog_content))
@torch.no_grad()
def forward(self, outputs, video_names, framewise_labels, counts):
""" Perform the computation
Parameters:
:param outputs: raw outputs of the model
:param start_frame:
:param video_names:
:param clip_length:
"""
for output, vn, framewise_label, count in zip(outputs, video_names, framewise_labels, counts):
output_video = torch.argmax(output, 0)
if vn in self.results_dict:
self.count += 1
prev_tensor, prev_count, prev_gt_labels = self.results_dict[vn]
output_video = torch.cat([prev_tensor, output_video])
framewise_label = torch.cat([prev_gt_labels, framewise_label])
count = count + prev_count
self.results_dict[vn] = [output_video, count, framewise_label]
class PostProcess_test(nn.Module):
def __init__(self, weights, label_dict, actions_dict, gt_path):
super().__init__()
self.labels_dict_id2name = label_dict
self.labels_dict_name2id = actions_dict
self.results_dict = dict()
self.results_json = None
self.count = 0
self.gd_path = gt_path
self.acc_dict = dict()
self.weights = weights
def start(self):
self.results_dict = dict()
self.count = 0
def get_acc_dict(self):
return self.acc_dict
def upsample_video_value(self, predictions, video_len, chunk_size):
new_label_name_expanded = []
prediction_swap = predictions.permute(1, 0)
for i, ele in enumerate(prediction_swap):
st = i * chunk_size
end = st + chunk_size
for j in range(st, end):
new_label_name_expanded.append(ele)
out_p = torch.stack(new_label_name_expanded).permute(1, 0)[:, :video_len]
return out_p
def accumulate_result(self, all_pred_value):
sum_ac = 0
for wt, pred_v in zip(self.weights, all_pred_value):
sum_ac = sum_ac + (wt * pred_v)
return torch.argmax(sum_ac / sum(self.weights), dim=0)
def dump_to_directory(self, path, suffix='_gt'):
print("Number of cats =", self.count)
if len(self.results_dict.items()) == 0:
return
prev_vid_id = None
all_pred_value = None
ne_dict = {}
video_id = None
for video_chunk_id, video_value in self.results_dict.items():
video_id, chunk_id = video_chunk_id.split("@")[0], video_chunk_id.split("@")[1]
assert video_value[1] * video_value[3] >= video_value[4]
upped_pred_logit = self.upsample_video_value(video_value[0][:, :video_value[1]],
video_value[4], video_value[3]).unsqueeze(0)
if video_id == prev_vid_id:
all_pred_value = torch.cat([all_pred_value, upped_pred_logit], dim=0)
else:
if all_pred_value is not None:
ne_dict[prev_vid_id] = self.accumulate_result(all_pred_value)
all_pred_value = None
prev_vid_id = video_id
all_pred_value = upped_pred_logit # With refinement softmax has to be added
if all_pred_value is not None:
ne_dict[video_id] = self.accumulate_result(all_pred_value)
# print(len(ne_dict))
for video_id, video_value in ne_dict.items():
pred_value = video_value.detach().cpu().numpy()
label_name_arr = [self.labels_dict_id2name[i.item()] for i in pred_value]
name = video_id.split('%')[0]
video_path = os.path.join(self.gd_path, name + ".txt")
recog_content = []
with open(video_path, 'r') as f:
lines = f.readlines()
for l in lines:
tmp = l.split('\t')
start_l, end_l, label_l = int(tmp[0]), int(tmp[1]), tmp[2]
recog_content.extend([label_l] * (end_l - start_l))
# assert len(label_name_arr) == len(recog_content)
out_path = os.path.join(path, video_id.replace("%", '_') + ".txt")
with open(out_path, "w") as fp:
fp.write("\n".join(label_name_arr))
fp.write("\n")
out_path1 = os.path.join(path + suffix, video_id.replace("%", '_') + ".txt")
if not os.path.exists(path + suffix):
os.makedirs(path + suffix)
with open(out_path1, "w") as fp:
fp.write("\n".join(recog_content[:len(label_name_arr)]))
fp.write("\n")
@torch.no_grad()
def forward(self, outputs, video_names, framewise_labels, counts, chunk_size_arr, chunk_id_arr, vid_len_arr):
for output, vn, framewise_label, count, chunk_size, chunk_id, vid_len in zip(outputs, video_names,
framewise_labels,
counts, chunk_size_arr,
chunk_id_arr, vid_len_arr):
key = '{}@{}'.format(vn, chunk_id)
if key in self.results_dict:
self.count += 1
prev_tensor, prev_count, prev_gt_labels, chunk_size, pre_vid_len = self.results_dict[key]
output = torch.cat([prev_tensor, output], dim=1)
framewise_label = torch.cat([prev_gt_labels, framewise_label])
count = count + prev_count
vid_len = vid_len + pre_vid_len
self.results_dict[key] = [output, count, framewise_label, chunk_size, vid_len]