-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
297 lines (247 loc) · 13.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import argparse
import random
from torch import optim
import pandas as pd
from utils import *
from dataset import *
from model import *
# os.environ["CUDA_VISIBLE_DEVICES"] = '5'
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def get_c2f_ensemble_output(outp, weights):
ensemble_prob = F.softmax(outp[0], dim=1) * weights[0] / sum(weights)
for i, outp_ele in enumerate(outp[1]):
upped_logit = F.upsample(outp_ele, size=outp[0].shape[-1], mode='linear', align_corners=True)
ensemble_prob = ensemble_prob + F.softmax(upped_logit, dim=1) * weights[i + 1] / sum(weights)
return ensemble_prob
################## Trainer (change loss)
class Trainer:
def __init__(self):
set_seed(seed)
self.model = C2F_TCN(config.feature_size, config.num_class)
self.ce = nn.CrossEntropyLoss(ignore_index=-100)
self.mse = nn.MSELoss(reduction='none')
self.num_classes = num_classes
assert self.num_classes > 0, "wrong class numbers"
print('Model Size: {}'.format(sum(p.numel() for p in self.model.parameters())))
self.es = EarlyStop(patience=args.patience)
def train(self, save_dir, num_epochs):
self.model.train()
self.model.to(device)
optimizer = optim.Adam(self.model.parameters(), lr=config.learning_rate, weight_decay=config.weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=config.step_size, gamma=config.gamma)
best_score = -10000
for epoch in range(num_epochs):
correct, total, nums = 0, 0, 0
epoch_loss, ce_loss, smooth_loss = 0.0, 0.0, 0.0
for i, item in enumerate(train_loader):
nums += 1
samples = item[0].to(device).permute(0, 2, 1)
count = item[1].to(device)
labels = item[2].to(device)
src_mask = torch.arange(labels.shape[1], device=labels.device)[None, :] < count[:, None]
src_mask = src_mask.to(device)
src_msk_send = src_mask.to(torch.float32).to(device).unsqueeze(1)
outputs_list = self.model(samples)
outputs_ensemble = get_c2f_ensemble_output(outputs_list, config.ensem_weights)
outp_wo_softmax = torch.log(
outputs_ensemble + 1e-10) # log is necessary because ensemble gives softmax output
ce_l = self.ce(outp_wo_softmax, labels)
mse_l = 0.17 * torch.mean(
torch.clamp(self.mse(outp_wo_softmax[:, :, 1:], outp_wo_softmax.detach()[:, :, :-1]),
min=0, max=16) * src_msk_send[:, :, 1:])
loss = ce_l + mse_l
ce_loss += ce_l.item()
smooth_loss += mse_l.item()
epoch_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
pred = torch.argmax(outputs_ensemble, dim=1)
correct += float(torch.sum((pred == labels) * src_mask).item())
total += float(torch.sum(src_mask).item())
scheduler.step()
pr_str = "[epoch %d]: loss = %.3f, ce = %.3f, sm = %.3f, acc = %.3f" % \
(epoch + 1, epoch_loss / nums, ce_loss / nums, smooth_loss / nums, float(correct) / total)
print(pr_str)
if (epoch + 1) % 5 == 0:
torch.save(self.model.state_dict(), save_dir + "/epoch-" + str(epoch + 1) + ".model")
test_score = self.test(epoch)
if test_score > best_score:
best_score = test_score
torch.save(self.model.state_dict(), save_dir + "/epoch-best" + ".model")
print("Save for the best model")
if self.es.step(loss=None, acc=test_score, criterion=lambda x1, x2: x2):
print("Early stop!")
exit(0)
def test(self, epoch):
self.model.eval()
epoch_loss, ce_loss, smooth_loss = 0.0, 0.0, 0.0
nums = 0
with torch.no_grad():
for i, item in enumerate(test_loader):
nums += 1
samples = item[0].to(device).permute(0, 2, 1)
count = item[1].to(device)
labels = item[2].to(device)
src_mask = torch.arange(labels.shape[1], device=labels.device)[None, :] < count[:, None]
src_mask = src_mask.to(device)
src_msk_send = src_mask.to(torch.float32).to(device).unsqueeze(1)
outputs_list = self.model(samples)
outputs_ensemble = get_c2f_ensemble_output(outputs_list, config.ensem_weights)
outp_wo_softmax = torch.log(outputs_ensemble + 1e-10)
ce_l = self.ce(outp_wo_softmax, labels)
mse_l = 0.17 * torch.mean(
torch.clamp(self.mse(outp_wo_softmax[:, :, 1:], outp_wo_softmax.detach()[:, :, :-1]),
min=0, max=16) * src_msk_send[:, :, 1:])
loss = ce_l + mse_l
ce_loss += ce_l.item()
smooth_loss += mse_l.item()
epoch_loss += loss.item()
postprocessor(outputs_ensemble, item[5], labels, count)
pr_str = "***[epoch %d]***: loss = %.3f, ce = %.3f, sm = %.3f" % (epoch + 1, epoch_loss / nums, ce_loss / nums, smooth_loss / nums)
print(pr_str)
path = os.path.join(results_dir, "tempt")
if not os.path.exists(path):
os.mkdir(path)
if not os.path.exists(path + '_gt'):
os.mkdir(path + '_gt')
postprocessor.dump_to_directory(path, '_gt')
final_edit_score, acc, overlap_scores = calculate_mof(path + '_gt', path, config.back_gd)
postprocessor.start()
results = {}
# action: standard metrics
results['f1_10'] = overlap_scores[0]
results['f1_25'] = overlap_scores[1]
results['f1_50'] = overlap_scores[2]
results['f_acc'] = acc
results['edit'] = final_edit_score
results['total_score'] = results['f1_10'] + results['f1_25'] + results['f1_50'] + results['f_acc'] + \
results['edit']
print("---[epoch %d]---: tst edit = %.2f, f1_10 = %.2f, f1_25 = %.2f, f1_50 = %.2f, acc = %.2f, total = %.2f "
% (epoch + 1, results['edit'], results['f1_10'], results['f1_25'], results['f1_50'],
results['f_acc'], results['total_score']))
self.model.train()
return results['total_score']
def predict(self, model_dir, results_dir, eval_loader, postprocessor_eval):
self.model.eval()
with torch.no_grad():
self.model.to(device)
self.model.load_state_dict(torch.load(model_dir + "/epoch-best" + ".model", map_location=device))
for i, item in enumerate(eval_loader):
samples = item[0].to(device).permute(0, 2, 1)
count = item[1].to(device)
labels = item[2].to(device)
outputs_list = self.model(samples)
outputs_ensemble = get_c2f_ensemble_output(outputs_list, config.ensem_weights)
postprocessor_eval(outputs_ensemble, item[5], labels, count, item[7].to(device), item[8],
item[3].to(device))
postprocessor_eval.dump_to_directory(results_dir)
final_edit_score, acc, overlap_scores = calculate_mof(results_dir + '_gt', results_dir, config.back_gd)
postprocessor_eval.start()
results = {}
# action: standard metrics
results['f1_10'] = overlap_scores[0]
results['f1_25'] = overlap_scores[1]
results['f1_50'] = overlap_scores[2]
results['f_acc'] = acc
results['edit'] = final_edit_score
results['total_score'] = results['f1_10'] + results['f1_25'] + results['f1_50'] + results['f_acc'] + \
results['edit']
print("---[Eval]---: tst edit = %.2f, f1_10 = %.2f, f1_25 = %.2f, f1_50 = %.2f, acc = %.2f, total = %.2f "
% (results['edit'], results['f1_10'], results['f1_25'], results['f1_50'],
results['f_acc'], results['total_score']))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
parser = argparse.ArgumentParser()
parser.add_argument('--action', default='train')
parser.add_argument('--feature_path', type=str, default='/mnt/data/zhanzhong/assembly/')
parser.add_argument('--dataset', default="assembly")
parser.add_argument('--split', default='train') # or 'train_val'
parser.add_argument('--seed', default='42')
parser.add_argument('--test_aug', type=int, default=0)
parser.add_argument('--patience', type=int, default=20)
args = parser.parse_args()
seed = int(args.seed)
set_seed(seed)
VIEWS = ['C10095_rgb', 'C10115_rgb', 'C10118_rgb', 'C10119_rgb', 'C10379_rgb', 'C10390_rgb', 'C10395_rgb', 'C10404_rgb',
'HMC_21176875_mono10bit', 'HMC_84346135_mono10bit', 'HMC_21176623_mono10bit', 'HMC_84347414_mono10bit',
'HMC_21110305_mono10bit', 'HMC_84355350_mono10bit', 'HMC_21179183_mono10bit', 'HMC_84358933_mono10bit']
config = dotdict(
epochs=200,
dataset=args.dataset,
feature_size=2048,
gamma=0.5,
step_size=200,
split=args.split)
if args.dataset == "assembly":
config.chunk_size = 20
config.max_frames_per_video = 1200
config.learning_rate = 1e-4
config.weight_decay = 1e-4
config.batch_size = 20
config.num_class = 202
config.back_gd = []
config.ensem_weights = [1, 1, 1, 1, 1, 1]
if args.action == 'predict':
if int(args.test_aug):
config.chunk_size = list(range(10, 31, 7))
config.weights = np.ones(len(config.chunk_size))
else:
config.chunk_size = [20]
config.weights = [1]
else:
print('not defined yet')
exit(1)
TYPE = '/c2f_{}'.format(args.seed)
model_dir = "./models/" + args.dataset + "/" + args.split + TYPE
results_dir = "./results/" + args.dataset + "/" + args.split + TYPE
if not os.path.exists(model_dir):
os.makedirs(model_dir)
if not os.path.exists(results_dir):
os.makedirs(results_dir)
vid_list_path = "data/coarse-annotations/coarse_splits/"
gt_path = "data/coarse-annotations/coarse_labels/"
mapping_file = "data/coarse-annotations/actions.csv"
features_path = args.feature_path
config.features_path = features_path
config.gt_path = gt_path
config.VIEWS = VIEWS
actions = pd.read_csv(mapping_file, header=0,
names=['action_id', 'verb_id', 'noun_id', 'action_cls', 'verb_cls', 'noun_cls'])
actions_dict, label_dict = dict(), dict()
for _, act in actions.iterrows():
actions_dict[act['action_cls']] = int(act['action_id'])
label_dict[int(act['action_id'])] = act['action_cls']
num_classes = len(actions_dict)
assert num_classes == config.num_class
############################dataloader
def _init_fn(worker_id):
np.random.seed(int(seed))
###########################postprocessor
postprocessor = PostProcess(config, label_dict, actions_dict, gt_path).to(device)
trainer = Trainer()
if args.action == "train":
train_dataset = AugmentDataset(config, fold=args.split, fold_file_name=vid_list_path, actions_dict=actions_dict, zoom_crop=(0.5, 2))
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=config.batch_size, shuffle=True,
pin_memory=True, num_workers=6, collate_fn=collate_fn_override,
worker_init_fn=_init_fn)
test_dataset = AugmentDataset(config, fold='val', fold_file_name=vid_list_path, actions_dict=actions_dict, zoom_crop=(0.5, 2))
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=config.batch_size, shuffle=False,
pin_memory=True, num_workers=6, collate_fn=collate_fn_override,
worker_init_fn=_init_fn)
trainer.train(model_dir, num_epochs=config.epochs)
if args.action == "predict":
eval_dataset = AugmentDataset_test(config, fold='val', fold_file_name=vid_list_path, actions_dict=actions_dict, chunk_size=config.chunk_size)
eval_loader = torch.utils.data.DataLoader(dataset=eval_dataset, batch_size=config.batch_size, shuffle=False,
pin_memory=True, num_workers=6, collate_fn=collate_fn_override_test,
worker_init_fn=_init_fn)
postprocessor_eval = PostProcess_test(config.weights, label_dict, actions_dict, gt_path).to(device)
if not os.path.exists(os.path.join(results_dir, 'prediction{}'.format('_aug' if int(args.test_aug) else ''))):
os.makedirs(os.path.join(results_dir, 'prediction{}'.format('_aug' if int(args.test_aug) else '')))
trainer.predict(model_dir, os.path.join(results_dir, 'prediction{}'.format('_aug' if int(args.test_aug) else '')),
eval_loader, postprocessor_eval)