-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmri-dqa-resnet-18.py
269 lines (214 loc) · 8.55 KB
/
mri-dqa-resnet-18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
"""
MRI-DQA-ResNet
Deep Quality Assessment of MRI using ResNet Model
author: Ashish Gupta
email: ashishagupta@gmail.com
"""
# DL Library
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
from torch.autograd import Variable
import torch.nn.functional as F
from torchvision import datasets, transforms
import numpy as np
import os
import random
import pandas as pd
import matplotlib.pyplot as plt
import math
# Nifti I/O
import nibabel
train_csv = 'train.csv'
val_csv = 'val.csv'
n_epoch = 10000
patch_h = 64
patch_w = 64
# -- DataSet Class -----------------------------------
class MRIData(Dataset):
def __init__(self, phase='train'):
self.phase = phase
if self.phase=='train':
self.data_list_path = train_csv
elif self.phase=='val':
self.data_list_path = val_csv
else:
assert False, 'Invalid argument for phase. Choose from (train, val)'
data_list_df = pd.read_csv(self.data_list_path, header=None)
data_list_df.columns = ['path', 'label']
self.image_path_list = list(data_list_df['path'])
self.image_label_list = list(data_list_df['label'])
def __getitem__(self, index):
"""
Returns a patch of a slice from MRI volume
The volume is selected by the inpurt argument index. The slice is randomly selected.
The cropped patch is randomly selected.
"""
nii = nibabel.load(self.image_path_list[index])
label = self.image_label_list[index]
nii = nii.get_fdata()
[img_h, img_w, img_d] = nii.shape
# drop the bottom 25% and top 10% of the slices
nii = nii[:,:,int(img_d/4):int(9*img_d/10)]
[img_h, img_w, img_d] = nii.shape
# extract random slice and random patch
h_l = int(random.randint(0, img_h-patch_h))
h_u = int(h_l+patch_h)
w_l = int(random.randint(0, img_w-patch_w))
w_u = int(w_l+patch_w)
d = int(random.randint(0, img_d))
nii = nii[h_l:h_u, w_l:w_u, d]
# convert to pytorch tensor
nii = torch.tensor(nii)
nii = nii.view(1, patch_h, patch_w).expand(3, -1, -1)
# return the mri patch and associated label
return nii, label
def __len__(self):
return len(self.image_label_list)
# -- DataSet Class -----------------------------------
# -- Network Class -----------------------------------
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, inp_channels= 3, num_classes=1000):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(inp_channels, 64, kernel_size=2, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(2, stride=1)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
# -- Network Class -----------------------------------------------
def main():
# instantiate network object
model = ResNet(BasicBlock, [2, 2, 2, 2], num_classes=2,inp_channels=3)
print(model)
# toggle gpu use based on availability
use_gpu = torch.cuda.is_available()
if use_gpu:
model = model.cuda()
print ('USE GPU')
else:
print ('USE CPU')
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr = 0.3, momentum = 0.1)
train_dataset = MRIData(phase='train')
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=1, drop_last=True)
# put model in training mode
model.train()
for epoch in range(n_epoch):
for batch_idx, (data, target) in enumerate(train_loader):
target = target.to('cuda:0')
print(data.shape)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
if epoch%1000 == 0:
model_save_path = './checkpoints/epoch_{}.pth'.format(epoch)
torch.save({'epoch': epoch, 'state_dict':model.state_dict(), 'optimizer': optimizer.state_dict()},model_save_path)
print('finished training')
# # Testing Code
if __name__=='__main__':
main()